9,430 research outputs found

    Water Requirement for Coal Slurry Transportation

    Get PDF
    The amount of water required for coal slurry transportation is a function of the coal properties and the magnitude of coal movement. The pipeline system characteristics and the method of slurry preparation also affects the overall water requirement of the system. In the present study methodologies are developed based on reported and modified coal slurry flow correlation equations to determine the quantity of water needed under various coal transport and flow conditions. Auxiliary water requirements including start-up and flushing water storage; related evaporation and seepage losses are also included. A computer program and several monographs are presented to provide a quantitative estimation of water requirements for fine to coarse coal slurry transport. The results are useful to the slurry pipeline design engineers in providing essential information for state and local water allocation policy determination

    Sensitivity-based scaling for correlating structural response from different analytical models

    Get PDF
    A sensitivity-based linearly varying scale factor is described used to reconcile results from refined models for analysis of the same structure. The improved accuracy of the linear scale factor compared to a constant scale factor as well as the commonly used tangent approximation is demonstrated. A wing box structure is used as an example, with displacements, stresses, and frequencies correlated. The linear scale factor could permit the use of a simplified model in an optimization procedure during preliminary design to approximate the response given by a refined model over a considerable range of design changes

    Mass Spectra of N=2 Supersymmetric SU(n) Chern-Simons-Higgs Theories

    Full text link
    An algebraic method is used to work out the mass spectra and symmetry breaking patterns of general vacuum states in N=2 supersymmetric SU(n) Chern-Simons-Higgs systems with the matter fields being in the adjoint representation. The approach provides with us a natural basis for fields, which will be useful for further studies in the self-dual solutions and quantum corrections. As the vacuum states satisfy the SU(2) algebra, it is not surprising to find that their spectra are closely related to that of angular momentum addition in quantum mechanics. The analysis can be easily generalized to other classical Lie groups.Comment: 17 pages, use revte

    Investigation of the 1+1 dimensional Thirring model using the method of matrix product states

    Full text link
    We present preliminary results of a study on the non-thermal phase structure of the (1+1) dimensional massive Thirring model, employing the method of matrix product states. Through investigating the entanglement entropy, the fermion correlators and the chiral condensate, it is found that this approach enables us to observe numerical evidence of a Kosterlitz-Thouless phase transition in the model.Comment: 7 pages, 4 figures; contribution to the proceedings of Lattice 2018 conferenc

    The Chern-Simons Coefficient in Supersymmetric Non-abelian Chern-Simons Higgs Theories

    Get PDF
    By taking into account the effect of the would be Chern-Simons term, we calculate the quantum correction to the Chern-Simons coefficient in supersymmetric Chern-Simons Higgs theories with matter fields in the fundamental representation of SU(n). Because of supersymmetry, the corrections in the symmetric and Higgs phases are identical. In particular, the correction is vanishing for N=3 supersymmetric Chern-Simons Higgs theories. The result should be quite general, and have important implication for the more interesting case when the Higgs is in the adjoint representation.Comment: more references and explanation about rgularization dpendence are included, 13 pages, 1 figure, latex with revte

    Nonmagnetic impurity perturbation to the quasi-two-dimensional quantum helimagnet LiCu2O2

    Full text link
    A complete phase diagram of Zn substituted quantum quasi-two-dimensional helimagnet LiCu2O2 has been presented. Helical ordering transition temperature (T_h) of the original LiCu2O2 follows finite size scaling for less than ~ 5.5% Zn substitution, which implies the existence of finite helimagnetic domains with domain boundaries formed with nearly isolated spins. Higher Zn substitution > 5.5% quenches the long-range helical ordering and introduces an intriguing Zn level dependent magnetic phase transition with slight thermal hysteresis and a universal quadratic field dependence for T_c (Zn > 0.055,H). The magnetic coupling constants of nearest-neighbor (nn) J1 and next-nearest-neighbor (nnn) J2 (alpha=J2/J1) are extracted from high temperature series expansion (HTSE) fitting and N=16 finite chain exact diagonalization simulation. We have also provided evidence of direct correlation between long-range helical spin ordering and the magnitude of electric polarization in this spin driven multiferroic material

    Inflationary Universe in Higher Derivative Induced Gravity

    Get PDF
    In an induced-gravity model, the stability condition of an inflationary slow-rollover solution is shown to be ϕ0ϕ0V(ϕ0)=4V(ϕ0)\phi_0 \partial_{\phi_0}V(\phi_0)=4V(\phi_0). The presence of higher derivative terms will, however, act against the stability of this expanding solution unless further constraints on the field parameters are imposed. We find that these models will acquire a non-vanishing cosmological constant at the end of inflation. Some models are analyzed for their implication to the early universe.Comment: 6 pages, two typos correcte

    Kaluza-Klein Induced Gravity Inflation

    Full text link
    A D-dimensional induced gravity theory is studied carefully in a 4+(D4)4 + (D-4) dimensional Friedmann-Robertson-Walker space-time. We try to extract information of the symmetry breaking potential in search of an inflationary solution with non-expanding internal-space. We find that the induced gravity model imposes strong constraints on the form of symmetry breaking potential in order to generate an acceptable inflationary universe. These constraints are analyzed carefully in this paper.Comment: 10 pages, title changed, corrected some typos, two additional comments adde

    Bianchi type I space and the stability of inflationary Friedmann-Robertson-Walker space

    Full text link
    Stability analysis of the Bianchi type I universe in pure gravity theory is studied in details. We first derive the non-redundant field equation of the system by introducing the generalized Bianchi type I metric. This non-redundant equation reduces to the Friedmann equation in the isotropic limit. It is shown further that any unstable mode of the isotropic perturbation with respect to a de Sitter background is also unstable with respect to anisotropic perturbations. Implications to the choice of physical theories are discussed in details in this paper.Comment: 5 pages, some comment adde

    Levels of protein C and soluble thrombomodulin in critically ill patients with acute kidney injury: a multicenter prospective observational study.

    Get PDF
    Endothelial dysfunction contributes to the development of acute kidney injury (AKI) in animal models of ischemia reperfusion injury and sepsis. There are limited data on markers of endothelial dysfunction in human AKI. We hypothesized that Protein C (PC) and soluble thrombomodulin (sTM) levels could predict AKI. We conducted a multicenter prospective study in 80 patients to assess the relationship of PC and sTM levels to AKI, defined by the AKIN creatinine (AKI Scr) and urine output criteria (AKI UO). We measured marker levels for up to 10 days from intensive care unit admission. We used area under the curve (AUC) and time-dependent multivariable Cox proportional hazard model to predict AKI and logistic regression to predict mortality/non-renal recovery. Protein C and sTM were not different in patients with AKI UO only versus no AKI. On intensive care unit admission, as PC levels are usually lower with AKI Scr, the AUC to predict the absence of AKI was 0.63 (95%CI 0.44-0.78). The AUC using log10 sTM levels to predict AKI was 0.77 (95%CI 0.62-0.89), which predicted AKI Scr better than serum and urine neutrophil gelatinase-associated lipocalin (NGAL) and cystatin C, urine kidney injury molecule-1 and liver-fatty acid-binding protein. In multivariable models, PC and urine NGAL levels independently predicted AKI (p=0.04 and 0.02) and PC levels independently predicted mortality/non-renal recovery (p=0.04). In our study, PC and sTM levels can predict AKI Scr but are not modified during AKI UO alone. PC levels could independently predict mortality/non-renal recovery. Additional larger studies are needed to define the relationship between markers of endothelial dysfunction and AKI
    corecore