Water Requirement for Coal Slurry Transportation

Digital Object Identifier: https://doi.org/10.13023/kwrri.rr. 146
David T. Kao
University of Kentucky
Sandra L. Rusher
University of Kentucky
Right click to open a feedback form in a new tab to let us know how this document benefits you.

Follow this and additional works at: https://uknowledge.uky.edu/kwrri_reports
Part of the Hydrology Commons, Natural Resources Management and Policy Commons, and the Water Resource Management Commons

Repository Citation

Kao, David T. and Rusher, Sandra L., "Water Requirement for Coal Slurry Transportation" (1983). KWRRI Research Reports. 57.
https://uknowledge.uky.edu/kwrri_reports/57

WATER REQUIREMENT
FOR
COAL SLURRY TRANSPORTATION

By

David T. Kao
Principal Investigator

Sandra L. Rusher
Research Assistant
Project Number: A-089-KY (Completion Report)
Agreement Number: $\quad 14-34-0001-2119$ (FY 1982)
Period of Project: \quad February 1982-September 1983
Water Resources Research Institute
University of Kentucky
Lexington, Kentucky

The work upon which this report is based was supported in part by funds provided by the United States Department of the Interior, Washington, D.C., as authorized by the Water Research and Development Act of 1978. Public Law 95-467.

DISCLAIMER

Contents of this report do not necessarily reflect the views and policies of the United States Department of the Interior, Washington, D.C., nor does the mention of trade names or commercial products constitute their endorsement or recommendation for use by the U.S. Government.

Abstract

The amount of water required for coal slurry transportation is a function of the coal properties and the magnitude of coal movement. The pipeline system chacteristics and the method of slurry preparation also affects the overall water requirement of the system. In the present study methodologies are developed based on reported and modified coal slurry flow correlation equations to determine the quantity of water needed under various coal transport and flow conditions. Auxiliary water requirements including start-up and flushing water storage; related evaporation and seepage losses are also included. A computer program and several monographs are presented to provide a quantitative estimation of water requirements for fine to coarse coal slurry transport. The results are useful to the slurry pipeline design engineers in providing essential information for state and local water allocation policy determination.

DESCRIPTORS: Water Demand*, Water Allocation*, Slurries*, Pipe Flow, Pipelines, Coal, Water Requirements*

IDENTIFIERS: Coal Slurry Pipelines, Coal Slurry Transportation, Coal Slurry Pipeline Design

TABLE OF CONTENTS

Page
ABSTRACT iii
LIST OF ILLUSTRATIONS vi
LIST OF TABLES viii
CHAPTER 1 - INTRODUCTION
1.1 National Coal Utilization Outlook 1
1.2 Kentucky Coal Movement 4
1.3 Development of Slurry Pipelines 5
1.4 Water Usage and Energy Industry 8
1.5 Water Availability 15
1.6 Legal and Environmental Aspects of Water Usage 18
1.7 Scope of the Research 21
CHAPTER 2 - ANALYSIS
2.1 Drag Force 24
2.2 Hold-up Effect 30
2.3 Critical Transport Velocity 32
2.4 Effect of Moisture on Water Requirement 34
2.5 Existing Work on Water Requirement Estimation 36
CHAPTER 3 - METHODOLOGY DEVELOPMENT
3.1 Water Required for Fine Coal Slurry Transportation 42
3.2 Water Required for Coarse Coal Slurry Transportation 43
3.3 Examination of Gaessler Correlations 45
3.4 Modified Gaessler Correlation for Distributed Size Particles 53
3.5 Determination of Local Coal Concentration Distribution 56
3.6 Water Required for Start-up 59
3.7 Storage Reservoir Requirements 60
CHAPTER 4 - RESULTS AND APPLICATION
4.1 Result Presentation 64
4.2 Example Problem for Slurry Water Determination 76
CHAPTER 5 - CONCLUSION 79
APPENDICES
APPENDIX A - Nomenclature 81
APPENDIX B - Computer Program 85
REFERENCES 93

LIST OF ILLUSTRATIONS

Figure Page
1.l Schematic Drawing of Coal Slurry Pipeline System 6
1.2 Potential Slurry Pipelines From Kentucky 9
1.3 Water Consumption of Various Energy Producing Systems 11
1.4 Water Consumption of Four Different Energy Transportation Systems 13
1.5 Sample Plot of Rosin-Ramler Coal Size Distribution 23
2.1 Drag Coefficient Versus Reynolds Number for Particles of Different Sphericities 27
2.2 Terminal Settling Velocity of Particles 29
2.3 Coal Slurry Transmission Water Requirements as a Function of Coal Throughput for Constant Moisture Contents 37
2.4 Coal Slurry Transmission Water Requirements as a Function of Coal-to-Water Ratio 40
2.5 Cost Analysis as a Function of Coal-to-Water Ratio 41
3.1 Coefficient of Water Requirement as a Function of Original Coal Moisture Content for Slurry Transport at Various Coal-to-Water Ratio Without Hold-up Effect 44
3.2 Gaessler Nomograph for $C_{w 2} / C_{W}$ 50
3.3 Gaessler Nomograph for β / β * 50
3.4 Gaessler Velocity Ratio Correlation V_{S} / V_{m} 52
4.1 Pipe Diameter Required for Coal Slurry Transportation at Various Predicted No-Blockage Mean Flow Velocity 73
4.2 Coal-to-Water Ratio vs Predicted Pipe Diameter 74
4.3 Water Requirement for Coal Slurry Transport 75
Table Page
1.1 Energy Supply and Demand Projection 3
1.2 Appalachian Regional Commission's Projection of Water Required for Slurry Transportation 15
1.3 Regional Runoff, 1975 Consumption, Percaptia Runoff, and Consumption Per Unit Runoff 16
2.1 Properties of Coal Received 35
2.2 O.T.A.'s Hypothetical Coal Slurry Pipelines 38
3.1 Flow Pattern Criteria by Gaessler 45
3.2 Water Vapor Pressure at Various Tempertures 61
3.3 Typical Values of Coefficient of Permeability 62
4.1 Computation Results for $1.19 \mathrm{~mm} x$ O Coal 66
4.2 Computation Results for $3.125 \mathrm{~mm} x 0$ Coal 67
4.3 Computation Results for 9.525 mm x 0 Coal 68
4.4 Computation Results for $12.7 \mathrm{~mm} x 0$ Coal 69
4.5 Computation Results for $25.4 \mathrm{~mm} \times 0$ Coal 70
4.6 Computation Results for $50.8 \mathrm{~mm} \times 0$ Coal 71

CHAPTER 1

INTRODUCTION

The outlook of our nation's energy picture has been a topic of discussion since the early 1970's when the Arab oil embargo took place. The embargo lead us to realize the serious security vulnerability a nation too dependent upon imported oil as a major source of energy. The vast coal reserves in the United states are once again being considered as available energy source for domestic needs as well as for export. The availability of transportation systems that can economically serve the coal movement needs was therefore, investigated by many researchers in order to determine the feasibility of extended use of these vast coal reserves.

1.1 National Coal Utilization Outlook.

It is estimated that the United states could operate on known coal reserves until the year 2280. Even with an increase in consumption the supply of coal from these reserves could last 200 years. Usage of these coal reserves would allow the United States to become less dependent upon imported oil. Based on the Federal Energy Administration (1976) scenarios, and extrapolation from the existing data,

Decker (1978) presented an energy supply and demand projection to the year 2000 as shown in Table 1.1.

In Table l.l, it can be seen that by the turn of the century the predicted use of coal as an energy source will increase from the current level by a factor of three plus. Coal will become a primary energy source which will supply 37% of the nation's energy needs by the year 2000. This represents an increase from today's figure of nineteen percent.

The intervention by the $F \in d e r a l$ Government gives another reason for increased coal utilization. Requirements were imposed on electric power plants to convert their boiler fuels from gas and oil to coal. The "United States requires that low sulfur fuels be used to the maximum extent practical where necessary to minimize adverse impacts on puolic health" (Reed,1976). These electric power plants are not always located where the coal is deposited or produced. This creates a complex transportation problem.

There are currently five transportation methods by which coal, or the energy derived from coal, can be transported. These methods include barge, rail, truck, pipeline, and electric power transmission. Each of these transportation methods has its advantages and application limits.

Barging, for example, is considered to be an energy efficient way of coal transportation but must have an adequate network of waterways and available facilities. Trucking is more suitable for short hauls and is not a very

Table 1.1 Energy Supply and Demand Project in quad̉* per year (Decker, 1978)
 FEA 1976 reference
 scenario basis-imported oil priceprojection, to, $\$ 13 /$ barrell, in 1975 dollars

Energy	1974	1980	1985	1990	2000
(1)	(2)	(3)	(4)	(5)	(6)

Coal 13.2	15.7	20.6	25.9	50
Petroleum 33.5	35.6	41.5	50.0	40
Natural Gas 22.0	22.7	24.2	22.8	10
Nuclear 1.2	3.9	8.7	13.3	20
Geothermal/hydro-				
electric/solar 3.3	3.7	3.9	4.2	15
Total 73.2	81.6	98.9	116.2	135

(b) Energy Use

Residential/ commercial	13.9	12.7	14.8	16.6	19
Industrial	20.9	23.1	27.1	31.1	34
Transport.	18.4	20.1	23.2	25.3	26
Electrical gener.	20.0	25.7	33.7	42.9	53
Synthetics	-	-	0.1	0.2	3
Total	73.2	81.6	98.9	116.2	135
	*quad	5 BT			

energy efficient system. Energy transportation by transmission of electric power generated at the coal source will require large quantities of cooling water at the coal mine where once-through open or recirculating water based systems are used. Besides, the power losses for long transmission systems can be extensive.

The limitations in rail transport capacity was analyzed by Buck(1978). By 1985, an estimated 18.6 million carloads of coal will be moved each year over an average distance of 430 miles. This increased coal transport traffic plus the railways usual commerce is projected to exceed the capacity of the system. The Vice President of Eurlingtion Northern Railways estimated that this increase in rail traffic would triple their current car inventory. Rail tracks and facilities, reportedly, would be overloaded resulting in a circuitous routing of coal unit trains. Such a consequence could lead to additional costs in time and tariff.

1.2 Kentucky Coal Moyement

Kentucky is the nation's largest coal producing state. A recent Geological Survey report indicated the state as having an estimated 40 billion ton coal reserve, which is equivalent to approximately 8 percent of the total coal reserves in the United states. In terms of coal production, in 1981 Kentucky provided 19.1 percent of the nation's output.

Since Kentucky retains, for its own use approximately 3.0 percent of the Eastern coal and 30 percent of the Western
coal (Kentucky Department of Transportation, K.D.O.T.,1974), the utilization of various coal transport systems is extensive. Presently coal is transported out of state by rail, river or highway. However the state's coal transit systems in many areas of Kentucky's coal fields is approaching or has reportedly reached capacity.

A potential alternative for coal transport is by pipeline this includes pneumatic and coal slury transportation. Applications for pneumatic pipelines in the coal industry to transport coal from the mine or deliver refuse to the mine for backfill have been tried out recently in England by the British Coal Board. For relatively short distances pneumatic transport systems appear to be an economical alternative to belt conveyor and trucking transportation (Oversight Hearings, $\mathbb{H} . S$. Congress, 1976). More extensive studies concerning the technological aspect, economic analysis and general safety of this system has been conducted and reported by Soo \& et al. (1975).

1.3 Development of Slurry Pipelines

A coal slurry pipeline transports coal particles by a carrying medium, usually water, through a pipeline. A schematic drawing depicting the various processes involved in and potential long and short distance applications of the coal slurry pipeline is shown in Fig.l.1. This concept was first patented in the late l9th century but was not put into industrial use until 1914 in London, England. A short slurry pipeline was then used to unload coal from barges on

Figure 1.l Schematic Drawing of a Coal Slurry Pipeline System
the Thames River for use in a nearby electric power generation plant.

This technology was utilized in the United states for long distance coal transport by the Consolidation Coal Company in 1957. A 10 inch diameter pipeline originating in Cadiz, Ohio and terminating at a power plant, near Cleveland Ohio, conveys coal 108 miles (Godwin,1979). After 6 years of successful operation and delivering 1.3 million tons of coal annually, the slurry pipeline was shut down due to the development of the rail unit-train, which lowered rail tariffs from $\$ 3.47$ per ton of coal to $\$ 1.88$ per ton of coal, making the operation of the slurry pipeline uneconomical. Since that time there have been only a few slurry transport lines built in the United states with only one long distance coal slurry pipeline in operation today.

The 273-mile Black Mesa pipeline is the only coal slurry pipeline operating in the United States at the present time (1983). This line runs from the Black Mesa mine in northeastern Arizona to the Mohave Power Plant in Nevada. It carries approximately 4.8 million tons of coal each year and has been under continuous operation since 1970 (Godwin, 1979). Successful operation of this line sparked development of other coal slurry pipelines including the planned 1003 mile ETSI (Energy Transport Systems Inc.) pipeline to deliver 25 million tons of coal annually from Wyoming to Arkansas.

Florida Gas Company and Fluor Corporation proposed a 1,500 mile pipeline to transport 40 to 50 million tons of
coal annually. This line is to carry coal from Eastern Kentucky-West Virginia and Fiestern Kentucky-Illinois regions to the Georgia and Florida markets (Fig 1.2). These markets currently import some coal from South Africa and Poland because of reported high delivery cost of Kentucky coal.

Other potential coal slurry pipelines from Kentucky were studied by the Appalachain Regional Commission (Mathtech,l978). Developec in the ARC report are computerized economic evaluations of these potential slurry pipelines for the region. Based on the results of the economic analysis these pipelines were classified into categories of highly probable, possible and unlikely. of the initial 573 coal links in the region twenty were categorized as highly probable, from which nine pipelines for Kentucky were included as shown also in Figure 1.2. These nine pipelines will transport an estimated 53.0 million tons of coal from Kentucky annually. These systems if established will require large quantities of water for their operation.

1.4 Water Usage and Energy Industry

Water is required for nearly every imaginable major energy producing system. The amount of water withdrawal and consumed varies from system to system. Water withdrawal is defined as water removed from the source of supply but not necessarily consumed. On the other hand, water consumption indicates the amount of water rendered unavailable for further use. Thus, water discharged from a coal

Figure 1.2 Potential Slurry Pipelines From Kentucky
gasification plant, if heavily polluted, is considered consumed water for many competing uses. Water evaporated from a wet cooling tower or man made lake is unlikely to be precipitated as rain in the same region and is therefore consumed water. Water used as a source of hydrogen for synthetic fuel production is also consumed water (Harte, 1978).

Water consumed per million BTU output for various energy systems is shown in Figure 1.3 (Davis, Cir.703). This comparison indicates coal slurry pipelines consume the least amount of water from a local source.

It has been suggested that coal slurry pipelines utilize a third to a fifth of the water required for coal gasification and onsite generation respectively (Palmer, 1978). As indicated in the Fuston Law Review the water required for mine mouth power plants, synthetic gas, and coal slurry pipelines is respectively, 100,30 , and 12 gallons per million BTU delivered (Reed,1976). This estimate is slightly modified by the Office of Technology Assessment (McDaniel,l979). OTA estimated, that for exporting one ton of coal equivalent energy, electric power generation requires five to seven times as much water and coal gasification requires twice as much water, from the coal producing state, as a slurry pipeline.

Another study was conducted using the Yampa River Basin in Northwestern Colorado as a setting (McDaniel,1979). Four energy transportation systems were analyzed to determine the water requirement for transporting 12.5 million tons of coal 1000 miles to Houston, Texas. The four energy transportation

Figure 1.3 Water Consumption of Various Energy Producing
systems investigated were; onsite power generation with high voltage lines to deliver the electricity; onsite coal gasification coupled with gas pipelines; coal slurry transport; and unit trains. It was found that on site generation would require 4.8 times as much water as coal slurry pipelines having a $50 / 50$ coal to water ratio. On the other hand coal gasification needs about 3 times as much water as coal slurry pipelines with a similar coal-to- water ratio. The water required for rail was considered negligible in comparison (Figure 1.4).

The Office of Technology Assessment (O.T.A.) of the United States Congress (1978) compared the water usage of the Jim Bridger Power Plant to two proposed fyoming coal slurry pipelines. This power plant, which is located in Southwestern Wyoming and uses 5 million tons of coal, requires 25,000 acre-ft of water per year. While the two proposed wyoming pipelines would each move 25 million tons of coal using 15,000 acre-ft of water.

The major proposed pipelines in the west have plans to develop their own water sources. For example, the proposed Colorado-Texas line would utilize brackish, mineralized water which would not be suitable for human or agricultural use. The Wyoming-Arkansas pipeline would utilize water from deep wells in East Wyoming, that would be drilled by the pipeline company (Committees on Interior and Insular Affairs, C.I.I.A.r1981).

Water for the Black Mesa pipeline is pumped from a deep extensive sandstone aquifer that underlies the Black Mesa

Figure 1.4 Water Consumption of Four Different Energy Transportation Systems
area. Approximately 3,200 acre-ft of water per year are withdrawn from this storage area. Since the recharge of these storage areas by precipitation is negligibly small eventual depletion of the water may be anticipated (Davis, Cir.703).

Other water sources for coal slurry pipelines include surface waters, primary effluent from treatment plants, irrigation return flows, reutilization of water from coal mining, ana recovered slurry water (0.T.A.,1978).

The suggested potential intermedjate distance pipelines from Kentucky and the proposed long distance Kentucky-Florida Coal slurry transport system will need an estimated 50,000 to 80,000 acre-ft (46 to 73 million gallons/day) of water, if fully implemented.

To further analyze this water requirement the Appalachian Regional Commission (Mathtech,1978) estimated the water required for each of the nine intermediate distance pipelines for Kentucky. It based this estimate on the projected demand of coal from the potential supply zones in Kentucky. The breakdown of this projected 53.8×10^{4} acre-ft/year of water is shown in Table 1.2.

Table 1.2 Appalachian Regional Commissions Projection of Water Required for Slurry Transportation. (Mathtech,1978)

Slurry zone Demand zone Annual Coal Flow Water Required

$\mathrm{KY}-2$	$\mathrm{NY}-2$	7.73	5.93
$\mathrm{KY}-4$	$\mathrm{AL}-2$	17.71	13.57
$\mathrm{KY}-4$	$\mathrm{AL}-2$	22.32	17.10
	$\mathrm{AL}-4$		
$\mathrm{KY}-2$	$\mathrm{NC}-3$	9.92	
	$\mathrm{SC}-2$		9.60
$\mathrm{KY}-3$	$\mathrm{NC}-3$	12.63	

Each slurry pipeline requires a pumping station every 50 to 100 miles, each punping station would require power and water stored for emergency use. These pumping stations may be three to four acres in size and adjacent acreage of four to ten acres must be available for water storage (Buck,1978). Therefore consideration must also be given to the availability of this additional water requirement.

1.5 Water Availability

The 1975 aggregate water demand in the United States is outlined in Table 1.3 (Harte, 1978). When comparing the averaged annual freshwater runoff of about $1,700 \mathrm{~km} / \mathrm{yr}$ (1.377xio ${ }^{9}$ acre-ft/yr.) with the annual consumption of $150 \mathrm{~km}^{3} / \mathrm{yr},\left(0.125 \times 10^{9}\right.$ acre-ft/yr.), water availability does not appear to be a problem. One may find such a conclusion to be erroneous because the actual supply and demand of water are highly variable with respect to time and location. Precipitation and river flow can vary broadly from season to season and from year to year.

Table 1.3 Regional Runoff, 1975 Consumption, Per Capita Runoff, and Consumption Per Unit Runoff. (Harte,1978)

These variations in Table 1.3 demonstrate the importance of determining the fractional runoff which can be safely consumed.

It is, therefore essential to recognize that the x-day, y-year low flow criterion would best account for supply limitations and ecological impacts intrinsic to the hydrological characteristics of a geographic region. Harte (1978) defined the terms x-day, y-year as is the lowest flow rate averaged over x consecutive days of the year expected, on the average, every y consecutive years. This flow is denoted by the symbol x^{2}. He determined that an allowed
percentage of the x-day, y-year low flow criterion should be formulated, to account for these limitations and impacts, where $y>1$ and $x<365$.

Actual figures showing the allowable consumptive and withdrawal rates for the nation's water basin areas were unattainable. According to Freezer (1982) these rates are controlled by preemptive Federal Regulations such as: flows reserved for navigation, flows reserved for water quality control, and flow related to the operation of federal projects.

The availability of water to substantiate the operation of a coal slurry line is a determining factor in its utilization. The potential expansion of the orisinating area of the pipeline and the restrictive development of new resources due to the water commitment must be considered. This is characterized in the O.T.A.(1978) report on coal slurry pipelines. In its analysis four hypothetical coal slurry lines were proposed including a fyoming to Texas and a Tennessee to Florida pipeline. These two slurry pipelines were estimated to use an average depleted flow of 3% of the Bighorn River and 0.1% of the Tennessee River respectively. When projected water demands for the 1985-2000 period were obtained, water requirements for three of the four lines were in excess of the legally available water supply, including the Wyoming-Texas pipeline (Freezer, 1982).

The Appalachain Regional Commission reported that water availability in Kentucky is substantial due to the Kentucky
coal field's access to the Ohio River Easin. This was substantiated by the ohio River Basin Commission's projection indicating that the consumptive demands by all users for the year 2020 would recuire a fraction of the available water (Mathtech,1978).

However, of the nine proposed Kentucky slurry pipelines, six are from the Eastern Kentucky coal field where coal is plentiful but water is locally scarce. The report from the Commission did not give specific consideration concerning the possible effect of slurry pipelines on local water needs and the state water resources allocation plan as a whole, except to point out that additional conservation measures may be needed. It did indicate however, that additional reservoirs may be required to supplement the amount of water presently available (Mathtech,1978). Accompanying the establishment of these new reservoirs and pumping station water storage ponds for coal slurry pipelines, one must realize the effect of additional evaporation and infiltration as a part of the overall water consumption that would be attributed to the slurry system.

1.6 Legal and Environmental Aspects of Water Usage

The Federal Government restricts the amount of water each hydrologic area may consume. Legal factors determine these restrictions. These basic legal factors include: Interstate Compacts, Prior Appropriations Doctrine, and Water Rights System (O.T.A.,1978).

Interstate Compacts place a practical limit upon the
quantity of water that maybe used in a given river basin or state. This restriction is supplemented by state legislative restrictions on use anc possible exercise of reserve rights of water.

The Doctrine of Prior Appropriation was established in 1855. It contains three distinct features. These features include:

1) Aright to use the water by diverting the water froma stream for beneficial use.
2) The first to acquire the right has priority over later claimants.
3) The water can be used at any location regardless to the distance the user is from the stream.

Within the jurisdictions governed by the Prior Appropriation Doctrine the water available that is not already in benefical use is very limited (Campbell,1976).

Water rights in the West are administered by the states, usually through a state engineer. Obtaining water rights is often a time-consuming and complicated affair, and the would be appropriator must often stand in line behind a series of prior applications.

Another surface water law is the Riparian System. This restricts water use to areas adjoining the stream or water storage facilities from where the water is taken. Ground water laws vary from surface water laws. Ground water, in some states, is governed by the "English Rule". This rule states that water below the surface is the property of the land owner, who may withdraw it irrespective of the effects on others. In the Western States the "Reasonable Use Rule"
and the "Correlative Rights Doctrine" are used. These laws consider, respectively, the adjoining land owners rights must be considered and co-equal rights to adjoining landowners (Campbell,1978).

Because the railroads are reluctant to voluntarily allow coal slurry pipeline crossings, Eminent Domain legislation which gives, the power to condemn private property for public use, may be necessary in order for the development of long distance interstate slurry pipelines. The use of eminent domain legislation to obtain slurry pipeline rights-of-way is a drawback. Such use could impair future developments that depend on water. The Coal Pipeline Act of 1981 restricts the usage of Eminent Domain.

The enviromental disturbances of slurry pipeline systems are concentrated during the period of construction. Because of the linear extension of the system, the enviromental impact during this period is expected to be much greater than that due to construction of a power plant. The environmental disturbances of the construction of power plants is limited to a small geographic area.

Once the system is completed, coal slurry pipelines are dustless, noiseless, (except for pumping station), and independant of weather, traffic and priorities of other shippers. They require approximately 30-50 ft of right of way, which can be revegetated and reused. Godwin (1979) cited that with proper water treatment practice, there will be no major coal slurry by-product water quality problems, leaving a pipeline rupture as the only main environmental hazard.

If a coal slurry pipeline ruptured a spray of suspension fluid would occur. Fine grained coal particles would accumulate in the immediate area. An immediate pressure loss would then be indicated at the following pumping station. This would signal a shut down of the line at the proceeding station terminating any further losses. The line could then be unearthed, repaired, reburied.
1.7 Scope of the Present Study

A more precise estimate of the water requirements for (coal slurry transportation) will help coal slurrification and transportation will help to determine the true effect of such water movement on local water utilization programs. A method of estimating water needs for coal slurry pipelines is presently unavailable. In order to develop a methodology for such applications one must examine the entire system and include all parameters involved in a coal slurry pipeline operation.

The concentration of coal slurry to be transported is usually referred to as 50 percent by weight. This means that the slurry mixture contains 50 weight percent of coal. Industrial practices have indicated that for fine and ultra fine coal particles, up to 75 percent concentration by weight is possible. However, when economic and energy efficiency analysis results dictate the need for a slurry line to deliver coarser coal, the 50 percent weight concentration may be unattainable. Short and medium distance (50 to 200 miles range) coal slurry pipelines for
run-of-mine coal, coal collection branch lines or intermode applications are examples for which coarse coal-water mixture may be more energy efficient because of savings in energy when dewatering the slurry coal (Kao,1982). A method for estimating the maximum permissible concentration will be attempted for it directly affects the quantity of water movement via slurry pipelines.

In preparation for slurry transport the coal is crushed to desired particle sizes. Although this process can be controlled to a certain extent, size distribution after power crushing follows closely the relationship suggested by Rosin-Ramler in figure 1.5. This relationship is adopted in this study for illustrating the size distribution effect on the transport phenomena including the possible solids hold-up. This will lead to a more realistic description of the slurry transport system.

To obtain a specified annual throughput of coal, without pipe blockage, a critical transport velocity must be maintained. Determination of this velocity requires taking into account the particle size, the desired concentration, pipe diameter and other related flow properties. Modified slurry flow existing correlation equations will be adopted for use in this analysis. By applying the developed methodology the total water requirement can be estimated for a specific coal slurry pipeline and include all components of concern. Nomographs will be constructed to aid the practical application of the method developed.

CHAPTER 2

ANALYSIS

The mechanics of solid-liquid flow is very complex. The trubulent eddies of the flowing liquid provide the primary carrying power to sustain the motion of the solid. Vertical and horizontal drag forces develop whenever a velocity differential exist between the velocity components of the solid particle and the carrying fluid. The vertical fluid drag force helps to maintain solids in suspension while the axial component of the fluid drag helps the solids to move forward along the direction of flow. The unbalanced gravitational force component in the vertical direction becomes apparent for larger particles and manifests itself in heterogeneous solid particle distribution in the pipe with the lower half having higher solid concentration than that in the upper half of the pipe. The horizontal velocity differential between the two phases contributes to the phenomena of "hold-up". Some of these slurry flow properties are briefly reviewed in the following sections.

2.1 Drag Force

In almost all practical coal slurry mixtures the coal particles have a higher density than their carrying fluid. This fluid can be water, methanol, ethanal, oil or liquid CO_{2}. As a submerged body a coal particle will fall
under the net effect of gravitation. This force has a magnitude which can be computed as:

$$
\begin{equation*}
F_{g}=d^{3}\left(\rho_{S}-\rho_{L}\right) g / 6 \tag{2.1}
\end{equation*}
$$

where:

$$
\begin{aligned}
d= & \text { particle diameter, } \mathrm{L} ; \\
\rho_{S}, \rho_{\mathrm{L}}= & \text { mass density of soils and liquid respectively, } \\
& \mathrm{ML}^{-3} ; \text { and } \\
g= & \text { gravitational acceleration, } \mathrm{LT}^{-2}
\end{aligned}
$$

This net gravitational force, will cause the particle to accelerate first until the fluid drag develops due to the relative motion between the fluid and the solid to balance it. The fluid drag force, F_{D}, can be computed as:

$$
\begin{equation*}
F_{D}=C_{D} P a \rho_{L}\left(V_{S}-V_{L}\right)\left(V_{S}-V_{L}\right) \tag{2.2}
\end{equation*}
$$

where:
$C_{D}=$ coefficient of drag;
Pa = projectional area of the solid on a plane normal to the direction of solid motion, L^{2}; and
$\mathrm{V}_{\mathrm{S}}, \mathrm{V}_{\mathrm{L}}=$ velocities of solid and liquid respectively, LT^{-1}
When the two forces become equal in magnitude, $F_{g}=F_{D}$, acceleration stops and a constant particle settling velocity is attained. In a resting fluid, $\mathrm{V}_{\mathrm{L}}=0$, the solid velocity under the balanced condition is referred to as terminal settling velocity, V_{0}. Substituting these into Eqs. 2.1 and 2.2 and solving for V_{O} gives:

$$
\begin{equation*}
V_{0}=\sqrt{\frac{4(s-1)}{3 C_{D}}} \tag{2.3}
\end{equation*}
$$

where, s is the specific gravity of the solid.
The above analysis is derived for a spherical particle with coefficient of drag, C_{D}, being a function of the particle Reynolds number:

$$
\begin{equation*}
\operatorname{Re}=v_{0} d / \nu \tag{2.4}
\end{equation*}
$$

where, v is the kinematic viscosity of the fluid with the dimensions in $L^{2} T^{-1}$. This functional relationship is well established and is shown in Figure 2.1 by the curve marked $\psi=1.000$ indicating that the particle is spherical in shape.

For solid particles having irregular shapes, a shape factor, ψ, will have a value other than unity. The definition of a shape factor can be best expressed by the relationship:

$$
\begin{equation*}
\psi=A s / A p \tag{2.5}
\end{equation*}
$$

where,

$$
\begin{aligned}
A s= & \text { the surface area of a sphere of the same } \\
& \text { volume as the particle, } L^{2} \text {; and } \\
A p= & \text { the surface area of the particle, } L^{2} .
\end{aligned}
$$

The effect of the shape factor on the coefficient of drag is also shown in Figure 2.1 for $\psi=0.9,0.8,0.7$ and 0.6 . The shape factor for a coal particle is commonly recognized as having a value of 0.7. Based on this shape factor the terminal settling velocity, V_{0}, for coal particles falling in water is shown to follow the relationship as depicted in

Figure 2.1 Drag Coefficient Versus Reynolds Number for Particles of Different Sphericities

Figure 2.2 for a broad range of particle sizes.
For computer applications, the C_{D} vs Re curve for coal particle with $\psi=0.7$ may be expressed as:

$$
\begin{equation*}
C_{D}=\exp \left(1.93489-.262589 * \operatorname{LOG}(\mathrm{Re})+.0189006 * \mathrm{LOG}(\mathrm{Re})^{2}\right) \tag{2.6a}
\end{equation*}
$$

for $\operatorname{Re}<100000$
$C_{D}=\exp \left(-9.1019+2.06907 * \operatorname{LOG}(\mathrm{Re})-.104981 * \mathrm{LOG}(\mathrm{Re})^{2}\right)$
for $\mathrm{Re}<10000$
$C_{D}=\exp \left(1.33574+.0087991 * \operatorname{LOG}(\mathrm{Re})-.008345 * \mathrm{LOG}(\mathrm{Re})^{2}\right)$
for $\mathrm{Re}<4000$
$C_{D}=\exp \left(4.07581-.81059 * L O G(\mathrm{ke})+.0528908 * \operatorname{LOG}(\mathrm{Re})^{2}\right)$
for $\operatorname{Re}<1000$
$C_{D}=\exp \left(6.25354-1.93306 * \operatorname{LOG}(\mathrm{Re})+.197017 * \operatorname{LOG}(\mathrm{Re})^{2}\right)$
for $\operatorname{Re}<100$
$C_{D}=\exp \left(4.25221-.8569 * \operatorname{LOG}(\mathrm{Pe})+.0714634 * \mathrm{LOG}(\mathrm{Re})^{2}\right)$
for $\mathrm{Re}<10$

$$
\begin{equation*}
C_{D}=24 / \mathrm{Re} \tag{2.6~g}
\end{equation*}
$$

for $\mathrm{Re}<1$
Similarly, several mathematical expressions are needed to describe the terminal settling velocity vs particle size as:

$$
\begin{equation*}
V_{O}=\exp \left(-14.803+2.2412 * \operatorname{LOG}\left(\mathrm{~d}-.0446 *\left(\operatorname{LOG}(\mathrm{~d})^{2}\right)\right.\right. \tag{2.7a}
\end{equation*}
$$

for $d<=150$
$\mathrm{V}_{\mathrm{O}}=\exp \left(-7.4543+.9489 * \operatorname{LOG}\left(\mathrm{~d}-.0252 * \operatorname{LOG}(\mathrm{~d})^{2}\right)\right.$
for $d>3000$
$\mathrm{V}_{\mathrm{O}}=\exp \left(-19.763+4.261 * \operatorname{LOG}\left(\mathrm{~d}-.2478 * \mathrm{LOG}(\mathrm{d})^{2}\right)\right.$
for $d<3000$

Figure 2.2 Terminal settling Velocity of Particles (Govier,1972)

2.2 Hold-up Effect

As stated earlier fluid drag in the axial direction provides the actual carrying force to achieve the transport activity. Fluid drag does not exist unless a velocity differential between the solid particle and liquid phase exists with the former having a lower average velocity than the latter. This is generally true except in the case of transporting neutrally buoyant solids.

As a result of the velocity differential, often referred to as slip velocity, the in-situ solid concentration increases. This phenomena is known as "hold-up". The magnitude of hold-up can be expressed in direct proportion to the velocity differential between the phases. Therefore, the hold-up ratio increases with increasing particle size, due to the greater slip velocity between the fluid and large solid particles.

Although, many observations have been made to determine the slip velocity (Newitt and et al, 1962) and hold-up phenomena (Bonnington, 1959; Soo, 1966; and Richardson, 1960) in solid/liquid and solid/gas flows, relatively few reliable measurements of these quantities are available. The observation results obtained by previous investigators are normally limited to the specific conditions employed in their work without presenting a general correlation for future applications.

In the attempt to formulate new prediction equations for flow regime and pressure loss gradient, Gaessler (1967) derived a method which may be used for holdup ratio evalua-
tion. This method, was confirmed indirectly by the measured pressure loss gradient data for water suspensions of a number of different types of solids, including coal particles. This method is generally considered reliable for medium and coarse particles suspended in water (Govier, 1972).

The importance of the hold-up effect is reflected in of increased in-situ solid concentration. This is also referred to by many as local or transport concentration as opposed to the actual input or delivered solid concentration. This effect becomes more predominant as coarser particles are used in the transport system.

Knowing that the maximum random packing for coal can reach a maximum of 62 to 65 percent by volume (Gaessler, 1967; Kao,1981), a criterion can thus be established for the in-situ transport concentration of coal to not exceed a certain value in order to avoid pipe blockage.

Further considerations should be given to the local solid concentration distribution. Because of the effect of the gravitational force, coal particles rarely reach a uniform dispersion throughout the pipe cross-section. Unless ultra-fine particles or extremely high velocities are used in the slurry mixture, the solid particles will be heavily concentrated in the lower portion of the pipe, leaving the upper portion with a solid concentration smaller than average (Durand, 1953; Newitt, 1962). This indicates that
the real control for the maximum local concentration should be placed in the lower portion of the pipe, instead of using the average value over the entire pipe cross-section as derived by Gaessler.

To determine the local concentration distribution, a method derived on the bases of turbulent dispersion and momentum transfer will be employed (Kao, 1983). The average concentration of the lower portion of the pipe cross-section can be obtained by a simple integration technique. This concentration, rather than the average in-situ solid concentration over the entire pipe cross-section will be used in determining the maximum permissible solid concentration. The actual water requirement can thus be estimated based on the delivered solid concentration corresponding to the specific maximum permissible value. A major influence on this value is the critical transport velocity of the solids.

2.3 Critical Transport Velocity

The critical transport velocity as mentioned above is defined for a slurry system as a velocity at which no sediment bed formation in the pipe takes place. Because of the complex nature of the slurry transport system, no prediction equation for the critical velocity was derived based strictly on theoretical considerations. None of the existing critical transport velocity correlations are proven to give reliable critical velocity predictions for solid/liquid mixtures containing distributed particle sizes. In an attempt to obtain an average value for the critical
transport velocity the following five commonly accepted correlation equations will be used.

Duŕand (1953)

$$
\begin{equation*}
V_{c}=1.35 \sqrt{2 \mathrm{gd}(\mathrm{~s}-1)} \tag{2.8a}
\end{equation*}
$$

Jufin (1965)

$$
\begin{equation*}
\mathrm{V}_{\mathrm{C}}=9.8 \sqrt[3]{\mathrm{D}} \sqrt[4]{\mathrm{V}_{\mathrm{O}}}(\mathrm{~s}-0.4) \tag{2.8b}
\end{equation*}
$$

Zandi-Govatos (1966)

$$
\begin{equation*}
V_{C}=\sqrt{40\left(g d(s-1) C_{V}\right) /\left(C_{D}\right)} \tag{2.8c}
\end{equation*}
$$

Turia-Yuan (1977)

$$
\begin{equation*}
\mathrm{V}_{\mathrm{C}}=\sqrt{2.411 \mathrm{C}_{\mathrm{V}}^{0.2263 \mathrm{~F}_{\mathrm{L}}}{ }^{-0.2334} \mathrm{C}_{\mathrm{D}}-0.3840 \mathrm{Dg}(\mathrm{~s}-1)} \tag{2.8a}
\end{equation*}
$$

Wasp (1977)

$$
\begin{equation*}
V_{C}=F^{\prime}{ }_{L}\left(C_{V}, d\right) \sqrt{2 g D(s-1)}\left(d_{s} / D\right)^{(1 / 6)} \tag{2.8e}
\end{equation*}
$$

Various notations used in the above Equations are defined as:

$$
\begin{aligned}
C_{D} & =\text { Drag coeff. of particle } \\
C_{V} & =\text { Delivered solid concentration by volume } \\
D & =\text { Pipe diameter, } L \\
d & =\text { mean solid particle diameter, } L \\
F_{L} & =\text { Fanning friction factor } \\
F^{\prime} & =1.25^{\star} C_{V} 0.19 \\
G & =\text { Gravity, } L T^{-2} \\
S & =\text { Specific gravity of solid } \\
V_{O} & =\text { Particle terminal settling velocity, } L T^{-1}
\end{aligned}
$$

The variation of the results of these correlations is demonstrated by substituting the following set of values into each equation for the corresponding critical velocity predictions.

For:

$$
\begin{array}{lll}
\mathrm{C}_{\mathrm{D}}=9.68 & \mathrm{DT}=3.125 \mathrm{~mm} & \mathrm{C}_{\mathrm{W}}=0.5 \\
\mathrm{~V}_{\mathrm{O}}=.0853 \mathrm{ft} / \mathrm{s} \text { (mean) } & \mathrm{F}_{\mathrm{L}}=3.43^{-3} & \mathrm{C}_{\mathrm{V}}=0.427 \\
\mathrm{D}=1.4 \mathrm{ft} & \mathrm{NS}=0.9 & \mathrm{~S}=1.35
\end{array}
$$

the critical velocity given by:

$$
\begin{array}{lr}
\text { Durand } & \mathrm{V}_{\mathrm{C}}=7.5805 \mathrm{ft} / \mathrm{sec} \\
\text { Jufin } & \mathrm{V}_{\mathrm{C}}=5.6232 \mathrm{ft} / \mathrm{sec} \\
\text { Zandi-Govato } & \mathrm{V}_{\mathrm{C}}=9.2864 \mathrm{ft} / \mathrm{sec} \\
\text { Turai-Yuan } & \mathrm{V}_{\mathrm{C}}=7.0170 \mathrm{ft} / \mathrm{sec} \\
\text { Wasp } & \mathrm{V}_{\mathrm{C}}=4.9343 \mathrm{ft} / \mathrm{sec}
\end{array}
$$

An average of the above is obtained to give $\mathrm{V}_{\mathrm{c}}=6.89 \mathrm{ft} / \mathrm{sec}$ and is used for the determination of the desired mean slurry flow velocity. To insure steady transport the mean transport velocity of the system is chosen to be 20 percent higher than the critical velocity, or:

$$
\begin{equation*}
V_{m}=1.2 * V_{c} \tag{2.9}
\end{equation*}
$$

2.4 Effect of Coal Moisture on Water Requirement

The inherent properties of coal can affect the behavior of system. For example, varying the specific gravity of the coal will alter the critical transport velocity. The moisture contents of coal can affect the water requirements for slurry transportation in two different ways: the inherent moisture moves along with the coal as part of the solid
which changes the coal particle density; the surface moisture integrates with the carrying medium becoming part of the water supply. When the coal is crushed the inherent moisture is released and air fills the pores that once contained moisture. As a result, coal particle density may drop slightly. The percentage of total and surface moisture content can be obtained by the following:

Total Moisture Content $=$
(Wet coal weight) $=$ (Bone dry coal weight) Bone dry coal weight

Surface Moisture =
(Wet coal weight) = (Air dry coal Weight) Bone dry coal weight

These properties are known to vary from point to point even within the same coal seam as seen in Table 2.1 (Kuhn,1982). This prohibits a standard calibration and classification of the property for individual coal beds. Coal samples, therefore, must be analyzed from each mine site to determine the pertinent properties when hydraulic transport is considered.

Table 2.1 Properties of Coal Received (Kuhn,1982)

Location	Average	Average Btu/lb	Specific Gravity
County, Seam			
Hopkins, No. 9	8.00	12685	1.34
Mulhenberg, No. 9	9.95	13085	1.44
Clay, Fireclay	4.90	14052	1.29
Letcher, Amburgy	3.90	13085	1.40
Harlan, High Splint	- 4.20	13815	1.30
Letcher, Imboden	2.05	14172	1.32

2.5 Existing Work on Water Requirement Estimation

Many attempts have been made to determine the quantity of water required for a coal slurry pipeline. The technique most commonly used includes a simplified calculation which takes into consideration only coal moisture content or coal-to-water ratio.

The effect of coal moisture can be demonstrated by a linear relationship which relates the water requirement directly to coal throughput. An equation for this relationship can be written as:

$$
\begin{equation*}
\text { MTY } 2000(1-O M C / 100) \tag{2.10}
\end{equation*}
$$

$\gamma_{L} 43560$
where
WRT = Water required for transport in acre-ft/year;
MTY $=$ Contracted coal in million tons/year;
OMC $=$ Percent original moisture content in coal;
$\gamma_{L}=$ specific weight of water in FL^{-3}; and
the constant's are for the conversion of tons and cubic feet to pounds of weight and acre-feet.

In the development of this equation, it was implicitly assumed that for coal slurry transportation, a $50 / 50$ coal to water weight ratio always holds true. A corresponding plot demonstrating water requirements in terms of coal throughput for constant moisture content is shown in Figure 2.3.

In the study conducted by the Office of Technology Assessment of the United States Congress (1978), this method was applied in estimating the water for four hypothetical

Figure 2.3 Coal Slurry Transmission Water Requirements as a Function of Coal Throughput for Constant Moisture Contents
pipelines of different tonnage capacities and from different coal regions (Table 2.2).

Table 2.2 O.T.A.'s Hypothetical Coal Slurry Pipelines.

PIPELINE	COAL (MTY)	RANGE OF ANNUAL WATER REQUIREMENTS
		35.0
(ACRE-FT/YR)		

This analysis indicates that for each million tons of coal transported each year one must provide a given amount of water regardless what coal particle size distribution is involved and what the size of the pipeline is used. The fact of the matter is that, both particle size distribution and pipeline diameter are important parameters which affect the coal slurry system behavior and water requirement. Without considering these factors one may find the analysis as being a case of over simplification.

When the coal-to-water ratio is taken as the principal factor influencing the quantity of water to be used, a different linear function relating the water requirement to the amount of coal shipped can be established. The United States Geological Survey National Center computed the water requirement for coal slurry pipeline systems (Palmer,1978) with varying coal to water mixture ratio ranging from a $40 / 60$ to $60 / 40$. Simple straightline relationships are obtained for water requirement as a function of coal
throughput as shown in figure 2.4. A cost analysis was also conducted over the same range of operating conditions to determine the feasible coal-to-water ratio. Figure 2.5 is a plot of the results of this analysis showing a decrease in pipeline cost as solid concentrations increase at first but pipeline cuts will increase when the coal content exceeds approximately 50 percent of the weight ratio.

Such cost behavior of the system was attributed to the fact that as the solid concentration in the slury increases, the total volume of slurry mixture decreases for the given weight of coal to be delivered resulting in using smaller pipe diameters. This accounts for some of the system cost savings. However, more and/ or larger pumps would be needed to overcome the greater friction energy loss resulted from transporting high concentration slurries. This, in turn, causes an increase in the overall system cost.

Figure 2.4 Coal Slurry Transmission Water Requirements as a Function of Coal-to-Water Ratio

Figure 2.5 $\begin{aligned} & \text { Cost Analysis as a Function of Coal-to-Water } \\ & \text { Ratio }\end{aligned}$

CHAPTER 3

METHODOLOGY

3.1 Water Required for Fine Coal Slurry Transportation

Fine coal particles are assumed to behave as a pseudohomogeneous substance when transported as a slurry. Because of such behavior, the water required is a function of both the original moisture content of the coal and the coal-towater ratio.

If the coal is crushed in water during the slurry preparation both the inherent moisture contained within the coal and the surface moisture become a part of the siurry components. In many cases this moisture may make up a significant part of the water required. Therefore, this source of water is taken into account when calculating the total water required for slurry transport.

The concentration of the slurry mixture is the major determining factor in obtaining the water requirement for the coal. Low coal-to-water ratios would require relatively high quantities of water, whereas higher ratios would require lower quantities of water. The concentration of the slurry is expressed in terms of weight or volume fraction and is related to the coal-to-water ratio equally in those respective terms. If the concentration is 30 percent coal by weight the coal-to-water ratio would be $30 / 70$ by weight. The same applies if the concentration is given in terms of
volume.
The effect of water moisture and slurry concentration have been used individually to calculate the water required for coal slurry transport as discussed earlier. Combining the two aspects would give a more useful general relationship for determining the slurry transport water requirement. This relationship is expressed in Eq 3.1.

$$
\begin{equation*}
W R T=\left((M T Y * 2000) /\left(\gamma_{L}{ }^{*} 43560\right)\right) *((1-C W)-(O M C / 100)) \tag{3.1}
\end{equation*}
$$

where

```
WRT = Water requirement, acre-ft;
MTY = Coal throughput, million short tons/year;
OMC = Original moisture content of coal; and
CW = Coal-to-water ratio by weight.
```

Dividing each side of Eq 3.1 by MTY, million tons of coal per year, the WRT may now be expressed in terms of the MTY as a water requirement coefficient. This relationship can be expressed graphically in terms of the orginal percent coal moisture and the coal-to-water ratio as shown in Figure 3.1. Multiplying the obtained coefficient, RWRT, by the tons of coal per year, the total water required for fine coal slurry transport is obtained in acre-ft/year.

3.2 Water Required for Coarse Coal Slurry Transportation

 Because of hold-up and gravitational effects, as discussed in the previous chapter, coarse coal particles do not behave as pseudo-homogeneous substances when transported.

Figure 3.1 Transmission Water Requirement for Fine Coal
in-situ concentration, which is often greater than the delivered concentration, develops within the pipe as a result of hold-up. It is this concentration that will limit the maximum quantity of coal the pipeline can transport. Therefore, in this study, a modified form of the Gaessler empirical correlation is needed to determine the maximum permissible volume of coal that can be safely transported in a horizontal slurry pipeline. The water requirement will then be computed for the pipeline system based on this coal to water ratio.

3.3 Gaessler Correlations For Evaluating Hold-up Effect on In-

situ Solid Concentration

Gaessler (1967) developed empirical relationships for estimating suspension and saltating bed load concentrations based on particle size, input concentrations and properties of the particles and fluid. He further proposed a flow pattern criteria based on the ratio of the fully suspended solids, $C_{w l}$, to input weight concentration of coal, C_{w}, as shown in Table 3.1.

Table 3.1 Flow pattern Criteria by Gaessler (1967)

Elow Pattern
Symmetric Suspension

Asymmetric Suspension

Moving Bed with Asymm. Suspen. Stationary Bed with Asymm. Suspen. Pipe Blocked

$$
\begin{gathered}
\mathrm{C}_{\mathrm{Hl}} \angle \mathrm{C}_{\mathrm{HI}} \\
1.0 \\
0.7-1.0 \\
0.2-0.7 \\
0-0.2 \\
0
\end{gathered}
$$

By applying the principle of the conservation of momentum the development of a correlation for predicting the ratio of the solid to mixture velocity was completed. From the results of these correlations the in-situ concentration due to the effect of hold-up can be estimated. The development of these relationships is briefly outlined below.

Estimation of the suspending and saltating solids begins with a simple mass balance equation. The sum of the two concentrations must equal the total input solid fraction:

$$
\begin{equation*}
C_{w}=C_{w 1}+C_{w 2} \tag{3.2}
\end{equation*}
$$

where

$$
\begin{aligned}
& \mathrm{C}_{\mathrm{W}}=\text { input weight fiaction of solids } \\
& \\
& =\left(Q_{\mathrm{S}} \rho_{\mathrm{s}}\right) /\left(Q_{\mathrm{m}} \rho_{\mathrm{m}}\right) \\
& \begin{aligned}
& \mathrm{C}_{\mathrm{w} 1}=\text { weight solid fraction in suspension } \\
&=\left(Q_{\mathrm{S} 1} \rho_{\mathrm{S}}\right) /\left(Q_{\mathrm{m}} \rho_{\mathrm{m}}\right) \\
& \begin{aligned}
\mathrm{C}_{\mathrm{w} 2} & =\text { weight solid fraction in saltation } \\
& =\left(Q_{\mathrm{S} 2} \rho_{\mathrm{s}}\right) /\left(Q_{\mathrm{m}} \rho_{\mathrm{m}}\right)
\end{aligned}
\end{aligned} .
\end{aligned}
$$

From the input weight fraction of solids the input volume fraction of solids can be obtained as:

$$
C_{V}=\left(C_{W} / \rho_{s}\right) /\left(C_{W} / \rho_{s}+\left(1-C_{W}\right) / \rho_{L}\right)
$$

where:

$$
\begin{align*}
C_{v} & =\text { input volume fraction of solids } \\
& =Q_{S} / Q_{m}=V_{S S} / V_{m} \tag{3.3}
\end{align*}
$$

where $\quad Q=$ volume flow rate

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{m}}=\text { average velocity of the mixture } \\
& \mathrm{V}_{\mathrm{SS}}=\text { superficial velocity of solids }
\end{aligned}
$$

and subscripts:

$$
\begin{aligned}
S, L, M & =\text { for Solid, Liquid and Mixture respectively } \\
1,2 & =\text { for Suspension \& saltation respectively }
\end{aligned}
$$

Gaessler's experimental analysis on water-solid flow mixtures through horizontal pipes lead to the development of a pressure drop relation. In the process of developing this relationship, he derived a correlation, as shown in Eq 3.4, to determine $C_{W 2}$ in terms of C_{V} and an estimated initial value of C_{wl}.

$$
\begin{equation*}
\frac{C_{w}}{C_{w}}=\frac{F_{r o}}{0.1 \phi_{S}} \sqrt{\frac{3}{4} C_{D}\left(\frac{C_{v}}{\phi_{S}}\right)^{z_{1}}} \tag{3.4}
\end{equation*}
$$

where

$$
\begin{align*}
& z_{1}=\frac{1}{\phi_{s}} \sqrt{\frac{3}{4}\left(\frac{\rho_{t}}{\rho_{s}-\rho_{t}}\right)} \frac{r_{r m}}{3.7}{ }^{z_{2}} \tag{3.5}\\
& z_{2}=\left(F_{\mathrm{rO}}\right)^{-1 / 3)} \\
& \rho_{t}=C_{S I}\left(\rho_{S}-\rho_{L}\right)+\rho_{L}=\text { bulk fluid density } \tag{3.6}\\
& C_{s l}=\text { the volume fraction of solids in full suspension } \\
& \begin{aligned}
F_{r o}=V_{0} / \sqrt{g D}= & \begin{aligned}
& \text { Froude number based on the settling } \\
& \text { velocity } V_{0} \text { of the average }
\end{aligned} \\
& \text { particle size }
\end{aligned} \\
& F_{r m}=V_{m} / \sqrt{g D}=\text { Froude number based on the mixture } \\
& O_{S}=\text { the volume fraction occupied by the solids if } \\
& \text { packed in a tube; for coal } \phi_{s}=0.60-0.65
\end{align*}
$$

After $C_{w 2}$ is initially determined the values may be check by Eq 3.2. If Eq 3.2 is not upheld a new value for $C_{w l}$ will be entered until the fundamental of mass conservation principle as expressed in Eq. 3.2 is satisfied.

With $C_{w 1}$ determined, the flow pattern of the slurry may be predicted by using Gaessler's flow pattern criteria. The velocity of the solids must now be determined for the evaluation of the in-situ solids concentration.

The velocity ratio of the saltating solids to the total solids is determined using:

$$
\begin{equation*}
\frac{v_{s}{ }^{2}}{v_{s}}=\left(\frac{C_{w} 2}{C_{v}}\right)\left(\frac{0.1 \theta_{s} \theta}{F_{r o} 3 C_{D} / 4}\right)\left(\frac{C_{v}}{\theta_{s}}\right)^{-z^{3}} \tag{3.7}
\end{equation*}
$$

where

$$
\begin{gather*}
z^{3}=\left(\frac{\phi}{\phi_{S}}\right) \sqrt{\frac{3}{4} \frac{\rho_{t}}{\rho_{S}-\rho_{t}}\left(\frac{F_{r m}}{3.7}\right)^{z_{4}}} \tag{3.8}\\
z_{4}=2\left(F_{r O}\right)^{1 / 3}-\left(1 / \phi_{S}\right) \\
\phi=\left(1-\phi_{S}\right) / \phi_{S}
\end{gather*}
$$

Gaessler then correlated Eqs 3.4 and 3.7 to obtain a factor of proportionality;

$$
\begin{equation*}
\beta=\beta_{\star} \quad\left(C_{W 2} / C_{W}\right)\left(V_{S} / V_{S 2}\right) \tag{3.9a}
\end{equation*}
$$

or

$$
\begin{equation*}
B=\beta_{*} \frac{F_{r o}}{0.1\left(1-\phi_{s}\right.} \sqrt{\frac{3}{4} C_{D}}\left(\frac{C_{v}}{\phi_{s}}\right)^{z_{3}} \tag{3.9b}
\end{equation*}
$$

$$
\begin{aligned}
\mathcal{O}= & \text { factor of proportionality, which is } \\
& \text { dependant upon the fraction of altating } \\
& \text { solids and their velocity, and the } \\
& \text { coefficient of sliding friction. } \\
\mathcal{S}_{*}= & \text { coefficient of sliding friction, which was } \\
& \text { found to be essentially constant for any } \\
& \text { solid material, liquid and pipe-wall } \\
& \text { combination. } 0.25-0.28 \text { for coal }
\end{aligned}
$$

Based upon his experimental data, Gaessler prepared nomographs, as shown in Figures 3.2 and 3.3 , to simplify the iterative solution of Eqs 3.4, 3.9a and 3.9b. These nomographs are based upon $\phi_{S}=0.65$ and $C_{D}=0.44$. If C_{D} deviates from 0.44 the obtained value may be multiplied by $\sqrt{C_{D} / 0.44}$ for an approximation of $C_{W 2} / C_{W}$ and B / β_{\star}.

Using the above correlations the ratio of the solids to mixture velocity can be determined by Equation 3.10 using. an interactive process.

$$
\begin{align*}
& \left(1-\frac{V_{s}}{V_{m}}\right)^{2}=\left(\frac{F_{r o}}{F_{r m}}\right)^{2}\left(\frac{V_{s}-V_{m} C_{V}}{V_{s}}\right)\left\{\beta+\left(\frac{V_{S}}{V_{m}}\right)^{2} \cdot\left(\frac{F_{r m}}{2}\right)\right. \\
& \left.\left[f_{s}^{*}\left(\frac{\rho_{S}}{\rho_{S}-\rho_{L}}\right)-f_{L}\left(\frac{\rho_{L}}{\rho_{S}-\rho_{L}}\right)\left(\frac{\left(1-C_{S}\right)^{2}}{\left(V_{s} / V_{m}\right)-C_{S}}\right)\right]\right\} \tag{3.10}
\end{align*}
$$

where:

$$
\begin{aligned}
\mathrm{f}_{\mathrm{S}}^{*}= & \mathrm{f}_{\mathrm{S}}^{0}\left(1-\left(\mathrm{C}_{\mathrm{W} 2} / \mathrm{C}_{\mathrm{W}}\right) *\left(\mathrm{~V}_{\mathrm{S} 2} / \mathrm{V}_{\mathrm{S}}\right)\right) \\
\mathrm{f}_{\mathrm{S}}^{0}= & \text { material constant that accounts for the } \\
& \text { properties of the solid particles and the } \\
& \text { pipe surface. } \\
& \text { For coal: }(3 \text { to } 5 \mathrm{~mm}) \text { in hardened steel } f_{S}{ }^{0}=0.0046
\end{aligned}
$$

Figure 3.3 Gaessler Nomograph for β / β * Figure 3.2 Gaessler Nomograph for $C_{w 2} / C_{w}$

The Velocity for solid, V_{S} can be obtained by multiplying the resultant value for $\left(V_{\mathrm{S}} / \mathrm{V}_{\mathrm{m}}\right)$ from Eq. 3.10 by the mean mixture flow velocity, $V_{m} / a s:$

$$
\begin{equation*}
V_{\mathrm{S}}=\left(\mathrm{V}_{\mathrm{S}} / \mathrm{V}_{\mathrm{m}}\right) * \mathrm{~V}_{\mathrm{m}} \text { from Eq. } 3.10 \tag{3.11}
\end{equation*}
$$

The superficial velocity of solids is given as:

$$
\begin{equation*}
v_{s s}=C_{V} v_{m} \tag{3.12}
\end{equation*}
$$

and the mean velocity of solids in the saltating bed is:

$$
\begin{equation*}
V_{S 2}=\left(V_{S 2} / v_{S}\right) * V_{S} \tag{3.13}
\end{equation*}
$$

in which, the value of $\left(V_{s 2} / V_{S}\right)$ is obtained from Eq.3.7. Equation of continuity, when applied, gives:

$$
\begin{equation*}
v_{s} C_{w}=v_{S 1} C_{w 1}+v_{S 2} C_{w 2} \tag{3.14}
\end{equation*}
$$

The in-situ transport concentration, CVT, can be evaluated to be:

$$
\begin{equation*}
C V T=\left(V_{m} / V_{S}\right) * C_{V} \tag{3,15}
\end{equation*}
$$

Gaessler demonstrated the sensitivity of this ratio as a function of $\mathrm{Frm}_{\mathrm{rm}}$ and F_{ro} in Figure 3.4. This ratio is relatively insensitive to the change of C_{V} and $\rho_{L} /\left(\rho_{S^{-\rho}} L^{\prime}\right)$ (Govier, 1972). These computations will allow the determination of the average velocity of solids, V_{S}, in the slurry transport system. The in-situ solid concentration can be obtained, by applying. Eq. 3.15 with the input solid concentration, C_{V} given.

Figure 3.4 Gaessler Velocity Ratio Correlations Vs/Vm

3.4 Moㅇified Gaess효er Correlation for slurries with Distributed Particles Size

Gaessler's analysis was confirmed indirectly by experimental results of pressure loss data collected from small and medium size pipe lines (46 to 160 mm diameter) using narrowly distributed coal particle sizes. To expand the application of these correlation to larger pipelines and transporiting slurries composed of solids with broad particle size ranges, a particle size distribution subdivision technique is needed. The development of this technique is briefly outlined in this section.

Three basic assumptions were made in the development of this technique. These assumptions are:

1. The fraction of particles having size d_{i} behaves the same way in a mixture of water and solids of distributed sizes as in a mixture of near uniform sizes.
2. Suspended solids of size, d_{i}, contributes its effect on $C_{W 2}$ computation only to those particles having size greater than d_{i}, in the manner of increasing the mass density of the carrying fluid.
3. The size distribution of coal after crushing and grinding is to follow the Rosin-Ramler function expressed mathematically as:

$$
\begin{equation*}
R=100 \exp \left[-\left(\mathrm{d}_{\mathrm{i}} / \mathrm{d}\right)\right]^{\mathrm{NS}} \tag{3.19}
\end{equation*}
$$

where

$$
\begin{aligned}
\mathrm{R}= & \text { weighlative oversize particles in percent by } \\
\mathrm{d}_{\mathrm{i}}= & \text { specific particle size } \\
\mathrm{d}= & \text { characteristic particle size } \\
\mathrm{NS}= & \text { coal character index, representing the slope of } \\
& \text { the size distribution function. }
\end{aligned}
$$

The particle size distribution particle size is subdivided into n sub-sections with each section having an average particle size, d_{i}. For each d_{i} a particle settling velocity is obtained from Eq 2.7a, 2.7bor 2.7c. A corresponding drag coefficient, C_{D} was determined using one of the equations Eqs $2.6 a$ through 2.6 g . These values were then used to determine $C_{w 2}$ and V_{S}. This process is initiated with the smallest d_{i} and continued until the entire range of the particles is accounted for.

The effect of the suspended solids accumulated from particles smaller in size than that of the particle under consideration is accounted for in the determination of the bulk fluid density, $T^{(i)}$. The percentage of suspended solids for each sub-section having particle size smaller than d_{i}, is added to the percentage of assumed suspended solids in the sub-section of particle size d_{i}. This increases the density of the carrying fluid and help to enhance its power to suspend more solids. Equation 3.20 represents the mathematical expression of this relationship.

$$
\begin{equation*}
\rho_{t}(i)=\left[C_{s l t}+C_{s l}(i) *(1-\Delta P(i))\left(\rho_{s}-\rho_{L}\right)+\rho_{L}\right. \tag{3.20}
\end{equation*}
$$

where $\mathrm{C}_{\text {slt }}$ is the accummulated fraction of solids in suspension and;

$$
C_{s l t}=\quad \sum_{j=1}^{j=i-1}
$$

$\Delta P(j)=$ percent fraction of $j^{\text {th }}$ sub-section

The process of determining the magnitude of other solid fractions; such as $C_{S 2}(i), C_{V 1}(i)$ and $C_{V 2}(i)$ of size d_{i} and corresponding velocities is as previously described (sec. 3.3). Each of the solid concentrations and velocities are weighted by their respective percentages in the computation process. Mathematically they are:

$$
\begin{align*}
& v_{s l t}=v_{s 1}\left(c_{v 1} /\left(C_{v 1}+c_{v 2}\right)\right) \Delta P(i) \tag{3.22}\\
& v_{s 2 t}=v_{s 2}\left(c_{v 2} /\left(c_{v 1}+c_{v 2}\right)\right) \Delta P(i) \tag{3.23}
\end{align*}
$$

where, $V_{S I T}$ and $V_{S 2 T}$ is the mean velocity of solids in suspension and in bed motion respectively.

The summation of the resulting concentrations, Cvlt and Cv2T, gives the in-situ transport concentration of solids in the pipe. By summing up the weighted solids component velocities as given in Eqs. 3.22 and 3.23, the average velocity of the solids are obtained.

$$
\begin{align*}
& \mathrm{C}_{\mathrm{v}}=\Sigma \mathrm{C}_{\mathrm{v} 1 \mathrm{t}}+\Sigma \mathrm{C}_{\mathrm{v} 2 \mathrm{t}} \tag{3.24}\\
& \mathrm{~V}_{\mathrm{S}}=\Sigma \mathrm{V}_{\mathrm{S}}(\mathrm{i}) * \Delta \mathrm{P}(\mathrm{i}) \tag{3.25}
\end{align*}
$$

The equations presented in the previous section for computing the supperficial velocity of solids, $V_{s s}$; mean velocity of solids in the saltating bed, $V_{s 2}$; and the insitu transport concentration, $C_{v t}$ (Eqs. 3.12 through 3.15) are all applicable. The throughput of coal and its water requirement for transportation is then derived to give:

$$
\begin{align*}
& V_{L}=\left(V_{m}-C_{v t} * V_{S}\right) /\left(1-C_{v t}\right) \tag{3.26}\\
& Q_{L}=V_{L}\left(1-C_{v t}\right)\left(\pi D^{2} / 4\right) \tag{3.27}\\
& Q_{S}=V_{S} * C_{v t} *\left(T_{D} / 4\right) \tag{3.28}
\end{align*}
$$

This leads to:

$$
\begin{gather*}
\mathrm{TSC}=\mathrm{Q}_{\mathrm{S}}(3600 * 24 * 3650 \mathrm{P}) \gamma_{\mathrm{S}} \tag{3.29}\\
2200 \tag{3.30}\\
\mathrm{WRT}=Q_{\mathrm{L}}(3600 * 24 * 3650 \mathrm{P}) \gamma_{\mathrm{L}} \\
2200
\end{gather*}
$$

where

$$
\begin{aligned}
& T S C= \text { Total coal transported in metric tons per year; } \\
& \text { and } \\
& O P= \text { Operation Factor, less than or equal to } \\
& \text { unity. }
\end{aligned}
$$

3.5 Determination of Local Coal Concentration Distribution

The in-situ solids concentration, $C_{V T}$ obtained above represent the volume fraction occupied by solids in a given section of pipe. The value of $C_{V T}$ is greater than the delivered solid concentration C_{V} as a result of hold-up in the system. The difference between ${ }^{-} C_{V T}$ and C_{V} become more obvious as the solid particle size and/or mass density increases.

The coal concentration distribution profile can be determined using an equation derived based on the theory of turbulent dispersion. Intergration of the in-situ concentration the lower portion of the pipe gives the critical value of the local coal concentration, C_{L}. This value is then compared with the maximum packing factor, O_{S}, and used to prescribe the maximum permissible input or detivered) solid concentration.

The gravitational effect will cause the solids to distribute unevenly over the pipe cross-section with more particle moving along the bottom portion of the pipe. The degree of heterogeniety increases by increasing particle size and/or the specific gravity of the solids. To determine the critical concition for plugging of the pipeline, it is essential that the phenonenon of heterogeneous solids distribution be considered and that the bottom portion of the pipe be taken as the control section.

This process is initiated by determining a reference concentration at $1 / 3$ of the coal particle diameter from the pipe's bottom. The solid concentration C_{a}, at this reference point can be expressed as (Utterback, 1977):

$$
\begin{equation*}
c_{a}=c_{v t}\left(A_{\rho}\right) / 2 r^{2}\left(\frac{a}{2 r-a}\right)^{z} \int_{a}^{\pi}\left(\frac{1+\cos \theta}{1-\cos \theta}\right)^{z} \sin ^{2} \theta d \theta \tag{3.33}
\end{equation*}
$$

where

$$
\begin{aligned}
& C_{a}=\text { reference concentration; } \\
& A_{P}=\text { area of pipe; } L^{2} ;
\end{aligned}
$$

$$
\begin{aligned}
r= & \text { radius of pipe, } L ; \\
\mathrm{a}= & 1 / 3 \text { mean particle diameter, } \mathrm{L} ; \\
\mathrm{z}= & \mathrm{V}^{\prime}{ }_{\mathrm{O}} /\left(\mathrm{B}^{*} \mathrm{~K}\left(\mathrm{~F}_{\mathrm{L}} \mathrm{~V}_{\mathrm{m}}^{2}\right) / 2\right) ; \\
\mathrm{B}= & \text { coefficient of proportionality }=0.92 ; \\
\mathrm{K}= & \text { Karman's constant, for water }=0.4 ; \text { and } \\
V_{\mathrm{O}}^{\prime}= & \text { mean particle setting velocity adjusted for } \\
& \text { heavy medium, } L T^{-1} \\
= & \left.V_{O}\left(\rho_{S} / \rho_{t}-1\right) /\left(\rho_{S} / \rho_{\mathrm{L}}\right)-1\right)
\end{aligned}
$$

From the reference point the concentration at any depth, y, can thus be determined to give:

$$
\begin{equation*}
C_{y}=C_{a\left(\frac{D-y}{y}\right.}^{\left.\frac{a}{D-a}\right)^{z}} \tag{3.34}
\end{equation*}
$$

where $C y$ is the concentration at y distance from the bottom of the pipe. Intergrating $C y$ from a to $/ 2$ the concentration for the lower portion of the pipe is evaluated as:

$$
\begin{equation*}
C_{L}=\frac{2 r^{2}}{A_{p} / z} \int_{a}^{\pi / 2} C_{y} \sin ^{2} \theta d \theta \tag{3.35}
\end{equation*}
$$

If C_{L} greater than $C V F * \theta_{S}$, where CVF is the concentration factor, a smaller input concentration value must be used for the system so that the danger of plugging can be avoided.

The originally calculated mixture velocity for a 50 percent solid concentration by weight, is maintained during this process. This is done to help maintain a higher solid velocity which in turn reduces C_{L}.

This computation procedure is continued until C_{L} reaches
a value that is smaller than $C V F O_{S}$. The input solid concentration corresponding to the final C_{L} value is the one used in the water requirement computation.

3.6 Water Required for Start-up

Prior to the transport of a coal slurry mixture the pipeline must be primed. The water required for priming is directly related to the pipe diameter given by (assuming 98\% operation time):

$$
\begin{equation*}
D=\sqrt{\left(\mathrm{MMT}^{*} 10^{6}\right) /\left(11033 * \mathrm{C}_{\mathrm{V}} * \mathrm{~V}_{\mathrm{m}}{ }^{*} \mathrm{r}_{\mathrm{L}}\right)} \tag{3.36}
\end{equation*}
$$

where:

$$
M M T=M i l i o n \text { metric tons of coal contracted, } \mathrm{MLT}^{-2}
$$

Each of these variables, except the mean velocity, V_{m} can be determined by the quantity and type of coal to be transported and the calculated coal-to-water ratio. Thus the water required for startup, priming, is given by:

$$
\begin{equation*}
S W R=(1 / 4) * 3.14 * D^{2} * L \tag{3.37}
\end{equation*}
$$

where:
SWR is the Start-up water required,in $L^{3} T^{-1}$; and L is the Pipe length.

3.7 Storage Reservoir Requirements

To maintain a constant flow, slurry pumping stations will be required at a maximum of 100 miles apart depending upon the system characteristics. These stations will have water storage facilities to insure accessible water for start-up and flushing. The quantity of water stored sinould be greater or equal to that needed for start-up operation water with adjustments made for evaporation and seepage losses.

Evaporation losses per each square foot can be determined by an empirical equation developed by Meyer (Viessman,1972). This equation is expressed as:

$$
\begin{equation*}
E=\left[C\left(e_{o}-e_{a}\right)(1+w / 10)\right] 365(1 / 12) \tag{3.38}
\end{equation*}
$$

where

$$
\begin{aligned}
\mathrm{E}= & \text { annual evaporation in foot depth/yr, } \mathrm{LT}^{-1} ; \\
\mathrm{C}= & \text { empirical constant, } 0.36 \text { for ordinary lakes; } \\
e_{o}= & \text { saturation vapor pressure at the water surface } \\
& \text { temperature. } \mathrm{Hg} \text {) Table } 3.2 \\
e_{\mathrm{a}}= & \text { vapor pressure of air, (} \mathrm{Hg} \text {), must be multiplied } \\
& \text { the relative humidity Table } 3.2 \\
\mathrm{~W}= & \text { wind velocity in mph at } 25 \mathrm{ft} \text { above the water } \\
& \text { surface, } \mathrm{L}^{3} \mathrm{~T}^{-1}
\end{aligned}
$$

Multiplying the evaporation loss by the reservoir surface area the annual volume of water lost due to evaporation can be determined.

Table 3.2 Water Vapor Pressure at Various Temperatures (Viessman,1972)

TEMP E
$32 \quad 0.18$
40
50
60
70
80
90
100
(IN. Hg)
0.25
0.36
0.52
0.74
1.03
1.42
1.94

The seepage of the storage area is estimated using Dacry's Law (A Water Resources Technical Publication, A.W.R.T.P.,1977)

$$
\begin{equation*}
\mathrm{Q}=\operatorname{KiA}\left(3.2181 * 10^{-2} \mathrm{ft} / \mathrm{cm}\right)\left(3.15 * 10^{7} \mathrm{sec} / \mathrm{Yr}\right) \tag{3.39}
\end{equation*}
$$

where:

$$
\left.\begin{array}{rl}
K= & \begin{array}{rl}
\text { coefficient of permeability for the } \\
& \text { foundation (table } 3.3, \text { Harr, } 1962 \text {) }
\end{array} \\
A= & \text { gross area of foundation through which flow } \\
& \text { takes place, } L^{2}
\end{array}\right\}
$$

with

$$
\begin{aligned}
\mathrm{h} & =\text { difference in head, (difference in head } \\
& \text { would be depth of water), L and; } \\
\mathrm{L}_{\mathrm{S}}= & \text { length of seepage path, } \mathrm{L} ;
\end{aligned}
$$

If the seepage rate is high, control measures such as; an impermeable lining may be used to inhibit the rate of seepage.

Table 3.3 Typical Values of Coefficient of Permeability (Harr,1962)

Soil Type

Clean Gravel
Clean Sand (coarse) Sand (mixture)
Fine Sand
Silty Sand Silt
Clay

Coefficient of Permeability $\mathrm{cm} / \mathrm{sec}$
1.0 and greater
$1.0-0.01$
$0.01-0.005$
$0.05-0.001$
$0.002-0.0001$
$0.0005-0.00001$
0.000001 and smaller

The annual water commitment for each pumping station is:

$$
\begin{equation*}
W P S=F_{C} \frac{S W R(\triangle L)}{L}+A_{e} E+Q\left(A_{S} Q\right) \tag{3.40}
\end{equation*}
$$

where
WPS $=$ Water/pumping station, L^{4};
$F_{C}=$ Factor estimating storage water utilization: depending upon the frequency of pipeline startup/shut down, FC can be greater or less than unity.
$A_{e}=$ Water surface area, L^{2};
AS = Area subject to seepage, L^{2}; and
$\mathrm{L}=$ Pipe length between pumping stations, L

Therefore the total water required for coal slurry system is the summation of the water needed for coal delivery and that utilized at the pumping stations. This is expressed as:

$$
\begin{equation*}
W R=W R T+N^{*}(W P S) \tag{3.41}
\end{equation*}
$$

where
$\mathrm{N}=$ Number of pumping stations

CHAPTER 4

RESULTS AND APPLICATIONS

The methodology developed in this study can be used for determining the maximum permissible solid concentration for coal slurry pipelines and for estimating the slurry transport system water requirements. Although the former represents an important design component by itself for slurry pipelines carrying coarse coal-water mixtures, it is also an essential step in order to make an accurate estimation of the actual amount of water required to deliver a given amoung of coal.

The maximum permissible solid concentration that can be transported through a coal slurry pipeline is determined by taking into account the slip velocity between solids, liquid hold-up phenomena and the heterogeneous solid distribution in the pipe.

Because of the large number of computations involved it is necessary to utilize a computer. A computer program written in Basic language for a microcomputer with $c / p m$ operating system has been prepared and is listed as shown in Appendix B.

To illustrate the proposed method and test the computer program a specific type of coal is selected for use in the assumed slurry transport system and is presented in Section 4.1. Some of the coal properties and the system parameters
used in this analysis are similar to that of the Black Mesa coal slurry pipeline system. For a full range sample analysis the following parameters were used:

Rosin-Ramler size dist. index $=0.9$ (Ref. Fig. 1.5)
Max. allowable conc. $=0.9 * \mathbf{s}=0.585$
Pipe roughness $=0.064 \mathrm{~mm}(0.00015 \mathrm{ft})$
Top coal particle size $=1.19$ to 50.8 mm
Water Temp. $=70$ degree F
Spec. Grav. coal $=1.35$

A sample computation was also prepared and presented in section 4.2 to demonstrate the total coal slurry system water requirement estimation method.

4.1 Results Presentation

The computation results are presented in Tables 4.1 through 4.6 in the order of increasing top or largest coal particle size. The different top sizes used are:

$$
\begin{aligned}
& 1.19 \mathrm{~mm}\left(1 / 16^{\circ}\right) \\
& 3.125 \mathrm{~mm}\left(1 / 8^{\prime \prime}\right) \\
& 9.525 \mathrm{~mm}\left(3 / 8^{\prime \prime}\right) \\
& 12.7 \mathrm{~mm}\left(1 / 2^{\circ}\right) \\
& 25.4 \mathrm{~mm}\left(1^{\prime \prime}\right) \\
& 50.8 \mathrm{~mm}\left(2^{\prime \prime}\right)
\end{aligned}
$$

The top coal particle size used in Table 4.1 is 1.19 mm which is the same as that used in Black Mesa pipeline. Five different computations were performed for this top coal particle size and each of the other particle sizes. This is
done by varying the pipe diameter from $D=1 f t$. to 3 ft . by 0.5 ft . increments.

Notations used for the computer output is defined as follows:

Nomenclature for Computer Output
CL - Solid concentration in lower half of pipe by volume
CVT - In-situ solid concentration by volume
CW - Delivered solid concentration by weight
D - Pipe diameter, ft.
DT - Top size of coal particle, MM
TC - Tonnage of coal delivered, Metric Tons
TW - Tonnage of water delivered, Metric Tons
TW/TC - Water-coal ratio
VL - Velocity of liquid, ft. Sec^{-1}
VM - Velocity of mixture, ft. Sec^{-1}
vS - Velocity of solids, ft. Sec^{-1}
VP - Terminal Settling velocity of solid, ft. Sec^{-1}

As shown in Table 4.1 that, although the slip velocity does exist between the two phases, it did not produce significant hold-up in the pipe. This is because both the difference between the solid Velocity V_{g} and liquid velocity, V_{L} and the degree of local concentration heterogeneity are small. As a result, the water and coal can remain at a one to one ratio even for the largest pipe diameter used in the computation.

For coarser coal particles, however, both the magnitude of the slip velocity and the degree of solid distribution

TABLE 4.1 Computation Results for $1.19 \mathrm{~mm} \times 0$ Coal

WATER REQUIREMENTS FOR COAL SLURRY TRANSPORT
**

DT, D, CVT, CL=	1.19	1	.426406	. 534902
VP, VM, VS, VL=	. 0204096	5.75788	5.74608	5.76665
CW, TC, TW, TW/TC=	. 5	$2.27748 \mathrm{E}+06$	$2.27748 \mathrm{E}+06$	1
DT, D, CVT, CL=	1.19	1.5	.426206	. 517216
VP, VM, VS, VL=	. 0199762	6.92193	6.91098	6.93007
CW, TC, TW, TW/ TC=	. 5	$6.16029 \mathrm{E}+06$	$6.16029 \mathrm{E}+06$	1
DT, D, CVT, CL=	1.19	2	. 426091	. 506237
VP, VM, VS, VL=	. 019717	7.89254	7.88218	7.90023
$\mathrm{CW}, \mathrm{TC}, \mathrm{TW}, \mathrm{TW} / \mathrm{TC}=$. 5	$1.24873 \mathrm{E}+07$	$1.248735+07$	1
DT, D, CVT, CL=	1.19	2.5	. 426017	.498551
VP, VM, VS, VL=	. 0195464	8.74104	8.73109	8.74842
CW, TC, TW, TW/ TC=	. 5	$2.1609 \mathrm{E}+07$	$2.1609 \mathrm{E}+07$	1
DT, D, CVT, CL=	1.19	3	. 425964	. 492744
VP, VM, VS, VL=	.0194196	9.50357	9.49394	9.51072
CW, TC, TW, TW/TC=	. 5	$3.38315 \mathrm{E}+07$	3.38315E+07	1

```
WATER TEMP. = 70
SPEC. FRA. COAL = 1.35
SIZE DEST. INDEX = .9
MAX. PERM. CONC. = .585
```

Table 4.2 Computation Results for $3.125 \mathrm{~mm} \times 0$ Coal

WATER REQUIREMENTS FOR COAL SLURRY TRANSPORT
**

DT, D, CVT, CL=	3.125	1	. 398403	. 564024
VP, VM, VS, VL=	. 0450964	7.10092	7.06624	7.12389
CW, TC, TW, TW/TC=	. 47	$2.6168 \mathrm{E}+06$	$2.95086 \mathrm{E}+06$	1.12766
DT, D, CVT, CL=	3.125	1.5	.407617	. 576767
VP, VM, VS, VL=	. 0479221	8.5327	8.50077	8.55467
CW, TC, TW, TW/TC=	. 48	$7.2469 \mathrm{E}+06$	$7.85081 \mathrm{E}+06$	1.08333
DT, D, CVT, CL=	3.125	2	.417041	. 594919
VP, VM, VS, VL=	. 0556613	9.72622	9.69687	9.74721
CW, TC, TW, TW/TC=	. 49	$1.50359 \mathrm{E}+07$	1.56496E+0\%	1.04082
DT, D, CVT, CL=	3.125	2.5	. 416861	.577502
VP, VM, VS, VL=	. 0542398	10.7694	10.7415	10.7893
CW, TC, TW, TW/TC=	. 49	$2.60134 \mathrm{E}+07$	$2.70752 \mathrm{E}+07$	1.04082
DT, D, CVT, CL=	3.125	3	.416737	. 564426
VP, VM, VS, VL=	. 053196	11.7067	11.6799	11.7259
CW,TC, TW, TW/TC=	. 49	$4.07196 E+07$	4.23817E+07	1.04082

```
WATER TEMP. = 70
SPEC. FRA. COAL = 1.35
SIZE DEST. INDEX = .9
MAX. PERM. CONC. = .585
```

Table 4.3 Computation Results for $9.525 \mathrm{~mm} \times 0$ Coal

**

WATER REQUIREMENTS FOR COAL SLURRY TRANSPORT

DT, D, CVT, CL=	9.525	1	. 353181	. 590705
VP, VM, VS, VL=	. 0920117	8.3685	8.27245	8.42095
CW, TC, TW, TW/TC=	. 42	$2.71576 \mathrm{E}+06$	$3.75033 \mathrm{E}+06$	1.38095
DT, D, CVT, CL=	9.525	1.5	. 37105	. 59168
VP, VM, VS, VL=	. 0869677	10.0472	9.96169	10.0976
CW, TC, TW, TW/TC=	. 44	$7.73049 \mathrm{E}+06$	$9.83881 \mathrm{E}+06$	1.27273
DT, D, CVT, CL=	9.525	2	. 380018	. 580809
VP, VM, VS, VL=	. 084692	11.4457	11.3656	11.4948
CW, TC, TW, TW/ TC=	. 45	$1.60589 \mathrm{E}+07$	$1.96275 \mathrm{E}+07$	1.22222
DT, D, CVT, CL=	9.525	2.5	. 389201	. 58637
VP, VM, VS, VL=	.0885381	12.6675	12.592	12.7157
CW, TC, TW, TW/ TC=	. 46	$2.84713 \mathrm{E}+07$	3.34228E+07	1.17391
DT, D, CVT, CL=	9.525	3	. 388919	. 56237
VP, VM, VS, VL=	. 0827345	13.7651	13.6929	13.811
$\mathrm{CW}, \mathrm{TC}, \mathrm{TW}, \mathrm{TW} / \mathrm{TC}=$. 46	$4.45509 \mathrm{E}+07$	5. $22988 \mathrm{E}+07$	1.17391

```
WATER TEMP. = 70
SPEC. FRA. COAL = 1.35
SIZE DEST. INDEX = .9
MAX. PERM. CONC. = . 585
```

Table 4.4 Computation Results for $12.7 \mathrm{~mm} \times 0$ Coal

**

WATER REQUIREMENTS FOR COAL SLURRY TRANSPORT
**

DT, D, CVT, CL=	12.7	1	. 335149	. 570106
VP, VM, VS, VL=	. 0976557	8.53507	8.41867	8.59374
CW, TC, TW, TW/TC=	. 4	$2.62265 E+06$	$3.93398 E+06$	1.5
DT, D, CVT, CL=	12.7	1.5	. 362133	. 580571
VP,VM,VS, VL=	.094534	10.2446	10.1414	10.3033
CW, TC, TW, TW/TC=	.43	7.68081玉+06	$1.01815 \mathrm{E}+07$	1.32558
DT, D, CVT, CL=	12.7	2	. 370962	. 575215
VP, VM, VS, VL=	. 0890457	11.6687	11.5721	11.7256
CW, TC, TW, TW/TC=	. 44	$1.59611 \mathrm{E}+07$	$2.03141 \mathrm{E}-107$	1.27273
DT, D, CVT, CL=	12.7	2.5	. 380038	. 575567
VP, VM, VS, VL=	. 0902089	12.9127	12.8216	12.9685
$\mathrm{CW}, \mathrm{TC}, \mathrm{TW}, \mathrm{TW} / \mathrm{TC}=$. 45	$2.8308 \mathrm{E}+07$	$3.45987 \mathrm{E}+07$	1.22222
DT, D, CVT, CL=	12.7	3	. 389288	. 58746
VP, VM, VS, VL=	. 096329	14.03	13.9432	14.0853
CW, TC, TW, TW/TC=	. 46	$4.54083 \mathrm{E}+07$	$5.33054 \mathrm{E}+07$	1.17391

```
WATER TEMP. =
SPEC. FRA. COAL = 1.35
SIZE DEST. INDEX = .9
MAX. PERM. CONC. = . 585
```

Table 4.5 Computation Results for $25.4 \mathrm{~mm} \times 0$ Coal

**

WATER REQUIREMENTS FOR COAL SLURRY TRANSPORT

DT, D, CVT, CL=	25.4	1	. 300622	. 574581
VP, VM, VS, VL=	.173691	9.0901	8.89344	9.17463
$\mathrm{CW}, \mathrm{TC}, \mathrm{TW}, \mathrm{TW} / \mathrm{TC}=$. 36	$2.48513 \mathrm{E}+06$	$4.41801 \mathrm{E}+06$	1.77778
DT, D, CVT, CL=	25.4	1.5	. 326701	. 589915
VP, VM, VS, VL=	. 151226	10.8975	10.7201	10.9835
CW, TC, TW, TW/TC=	. 39	$7.32473 \mathrm{E}+06$	$1.14566 \mathrm{E}+07$	1.5641
DT, D, CVT, CL=	25.4	2	. 335044	. 571293
VP, VM, VS, VL=	.131951	12.4017	12.2364	12.4849
$\mathrm{CW}, \mathrm{TC}, \mathrm{TW}, \mathrm{TW} / \mathrm{TC}=$. 4	$1.52431 \mathrm{E}+07$	$2.286475+07$	1.5
DT, D, CVT, CL=	25.4	2.5	. 35305	. 587885
VP, VM, VS, VL $=$.133579	13.7149	13.5625	13.798
CW, TC, TW, TW/TC=	. 42	$2.78173 \mathrm{E}+07$	$3.84144 \mathrm{E}+07$	1.38095
DT, D, CVT, CL=	25.4	3	. 362104	. 586844
VP, VM, VS, VL=	. 131875	14.8938	14.7449	14.9784
CW, TC, TW, TW/TC=	.43	$4.46659 \mathrm{E}+07$	$5.92083 \mathrm{E}+07$	1.32558

```
WATER TEMP. = 70
SPEC. FRA. COAL = 1.35
SIZE DEST. INDEX = .9
MAX. PERM. CONC. = . 585
```

Table 4.6 Computation Results for 50.8 mm x 0 Coal

t***

WATER REQUIREMENTS FOR COAL SLURRY TRANSPORT
**

DT, D, CVT, CL=	50.8	1	. 295319	. 589285
VP, VM, VS, VL=	. 32109	9.58311	9.25257	9.72163
CW, TC, TW, TW/TC=	. 35	$2.53988 E+06$	$4.71691 \mathrm{E}+06$	1.85714
DT, D,CVT, CL=	50.8	1.5	- 302094	. 594951
VP, VM, VS, VL=	. 269071	11.472	11.1691	11.6031
CW,TC,TW, TW/TC=	. 36	$7.05672 \mathrm{E}+06$	$1.25453 \mathrm{E}+07$	1.77778
DT, D, CVT, CL=	50.8	2	. 309886	. 594639
VP, VM, VS, VL=	.235396	13.0425	12.7592	13.1697
CW,TC, TW, TW/TC=	. 37	$1.47009 \mathrm{E}+07$	$2.50313 \mathrm{E}+07$	1.7027
DT, D, CVT, CL=	50.8	2.5	. 318128	. 592949
VP, VM, VS, VL=	. 213322	14.4126	14.146	14.537
$\mathrm{CW}, \mathrm{TC}, \mathrm{TW}, \mathrm{TW} / \mathrm{TC}=$. 38	$2.61442 \mathrm{E}+07$	$4.26563 \mathrm{E}+07$	1.63158
DT, D, CVT, $\dot{C L}=$	50.8	3	. 326763	. 589337
VP, VM, VS, VL=	. 19987	15.642	15.3845	15.7669
CW, TC, TW, TW/TC=	. 39	$4.2055 \mathrm{E}+07$	$6.57784 \mathrm{E}+07$	1.5641

WATER TEMP. $\quad \Rightarrow \quad 70$
SPEC. FRA. COAL $=1.35$
SIZE DEST. INDEX $=.9$
MAX. PERM. CONC. $=.585$
heterogeneity increases. This causes the lower half of the pipe to approach critical condition at high solid concentrations. When this happens, the computer is programmed to reduce the input (or delivered) solid concentration by one percent and repeat the analysis again until the danger of plugging in the lower portion of the pipe diminishes. This process was carried out with the mean flow velocity, V_{m}, being kept at the same level as initially determined for $C_{W}=0.5$.

The results of these repeated analyses are shown in Tables 4.2 through 4.7 in which the final permissible solid concentration, C_{w}, is printed. The values of this concentration are somewhat smaller than the initial value of 0.5. As a result, more water is required to deliver a given amount of coal in this case than what is required for a system capable of transporting a coal slurry at a 50/50 coal to water ratio.

With the mean slurry flow velocity selected to equal a value twenty percent higher than the cirtical velocity, $\mathrm{V}_{\mathrm{M}}=$ $1.2 \mathrm{~V}_{\mathrm{C}}$, a relationship between the pipe diameter, coal particle size and the throughput of coal exists. This is because the critical velocity, V_{C}, is computed as a function of pipe diameter, solid concentration and particle size as shown in Eqs. 2.8 through 2.8e. A plot of this relationship is shown in Fig. 4.1.

The water to coal ratio is plotted in Fig. 4.2 for different coal particle sizes. Based on this water/coal ratio, the annual water requirement for coal delivery can be

Figure 4.1 Pipe Diameter Required for Coal Slurry Transportation at Various Predicted No-Blockage Mean Flow Velocity

Figure $4.2 \begin{aligned} & \text { Coal-to-Water Ratio vs Predicted Pipe } \\ & \text { Diameter }\end{aligned}$

Figure 4.3 Water Requirement for Coal Slurry Transport
computed and is again plotted in terms of pipe diameter as depicted in Fig. 4.3.

In actual application and for preliminary estimation of the slurry transport water requirement, one may use Fig. 4.1 to select a pipe diameter based on the designed coal throughput and desired particle size. Using the selected pipe diameter, in connection with Figs. 4.2 and 4.3 , the corresponding water-to-coal ratio and estimated transport water requirement can be determined.

It should be noted, however, that these plots are constructed for a specific type of coal that has a RosinRamler size distributio index $n=0.9$. For coal having a substantially different basic property, the given plots may yield erroneous results. . In such instances, a separate computer analysis is needed.

4.2 Example Problem for Slurry Water Determination

If a coal slurry transportation system is to deliver 8.0 million tons of coal with a top size of 12.7 mm , distribution index 0.9 and sphericity of 0.7 a distance of 1000 miles, the specific parameters for the slurry system are:

$$
\begin{array}{rlrl}
\ell & =1.35 & L=1000 \text { miles } & K=.00005 \mathrm{~cm} / \mathrm{sec} \\
\psi & =0.7 & & \text { foundation depth }=70 \mathrm{ft} \\
\text { NS } & =0.9 & & \mathrm{~W}=15 \mathrm{mph} \\
\mathrm{dt} & =12.7 \mathrm{~mm} & \text { air temp } \quad=60^{\circ} \mathrm{F} & \mathrm{~L}_{\mathrm{S}}=165 \mathrm{ft} \\
& & \text { humidity }=40 \mathrm{q}
\end{array}
$$

From Figures 4.1, 4.2 and 4.3 or by direct computation the water-to-coal ratio is obtained to determine the transport water based on the tonnage of coal and particle top size.

```
\(T W / T C=1.39\)
    \(D=1.65 \mathrm{ft}\) (use \(20^{\prime \prime}\) pipe)
WRT \(=11 * 10^{6}\) tons/yr * \(8.087 * 10^{-4}\) acre-ft/ton
WRT \(=8,895.7\) acre-ft/yr
```

The water requirement for the assumed $50 / 50$ water-to-coal ratio system is 5,886 acre-fr/yr. This value differs from the computed total slurry system water requirement by 3,010 acreffeyr. For a pipe diameter of l.65ft the startup water is determined from Equation 3.38 to be $1.128 * 10^{7} \mathrm{ft}^{3}$ or 259 acre-ft for the entire coal slurry transport system. Dividing the $S W R$ by the total pipe length, L, and multiplying by the pipe length between pumping stations, DL, the water/start-up for each station is obtained.

$$
\text { SWR/station/startup }=1.128 * 10^{7} \mathrm{DL} / \mathrm{L}
$$

For $L=1,000$ miles and $D L=100$ miles:

$$
\text { SWR/station/startup }=25.91 \text { acre-ft/each start up }
$$

The evaporation loss due to additional storage can now be estimated from Eq 3.39 and Table 3.2 for a water depth of 35 ft .

$$
\begin{aligned}
E & =(0.36 *(.25-(.52)(.40))(1+15 / 10)) 365(1 / 12) \\
& =1.149 \mathrm{ft} / \mathrm{yr}
\end{aligned}
$$

Assuming a water depth of 35^{\prime} in the reservior, the water surface area may be computed. The total evaporation of the impounded water is:

$$
\begin{aligned}
& \mathrm{E}=1.149 * 1.128 * 10^{6} / 35=3.70 * 10^{5} \mathrm{ft}^{3} / \mathrm{yr} \\
& \mathrm{E}=8.501 \text { acre-ft/yr }
\end{aligned}
$$

The estimated seepage loss for an unlined water pond is evaluated from Eq 50, for an assumed depth of 35 ft containing the necessary start-up water as:

$$
\begin{aligned}
& \mathrm{K}=51.73 \mathrm{ft} / \mathrm{yr} \\
& \mathrm{~A}=70 \mathrm{ft} * \mathrm{I} \mathrm{ft} \\
& \mathrm{Q}=51.73 \mathrm{ft} / \mathrm{yr} * 70 \mathrm{ft}^{2} * 35 \mathrm{ft} / 165 \mathrm{ft} \\
& \mathrm{Q}=76.81 \mathrm{ft}^{3} / \mathrm{yr} * 179.5 \text { (berm width) } \\
& \mathrm{Q}=0.3165 \text { acre-ft/yr }
\end{aligned}
$$

The total water for a coal slurry system from Eqs 3.41 and 3.42 is :

Transport water $=8895.7$ acre-ft/yr
Startup water $=25.91$ acre-ft/yr
Evaportation $=8.501$ acre-ft $/ \mathrm{yr}$
Seepage $=0.3165$ acre-ft/yr
Number of pumping stations $=10$

$$
\begin{aligned}
& W R=8895.7+10(25.91+0.8501+0.3165) \\
& W R=9166.47 \text { acre-ft/yr }
\end{aligned}
$$

If evaportation and seepage water requirements were not included the total water requirement would then be $9,154.8$ acre-ft/yr.

CHAPTER 5

CONCLUSION

For industrial applications of long distance coal slurry pipelines, fine coal-water mixtures at a 50 percent concentration by weight is presently considered. However, in many instances, when factors involving economics and overall system energy efficiency are taken into account, use of coarse coal could be more advantageous than pulverized fine coal particles. This is true especially for short and medium distance pipelines. If a coarse coal slurry pipeline is adopted, a 50 percent by weight concentration may not always be attainable.

In a coarse coal slurry transport system, the phenomenon of the velocity differential between the suspended and suspending phases becomes more apparent and causes a significant increase in the in-situ transport solid concentration in the pipe. This concentration, instead of input or delivered concentration should be used in the pipeline limiting concentraton determination process if pipeline blockage is to be avoided. Based on this criterion, the maximum permissible delivered concentration, often less than 50 percent weight concentration, can be estimated. As a result, more water will be required through such a pipeline to deliver the same amount of coal.

In the present study, an attempt was made to develop a more comprehensive methodology for estimating the amount of required water to be used in the coal slurry transport
pipeline design process. The computed results provide the total water requirement information for the entire system including water for start-up, flushing, evaporation and seepage losses. The total water requirement for a coal slurry pipeline should serve state and local water resources allocation and policy determination needs.

The use of the modified Gaessler correlation appear to provide reasonable results for the hold-up velocity and insitu transport concentration. By intergrating along the solid concentration distribution curve over the lower half of the pipe cross section, the average in-situ concentraton for this portion of the pipe can be evaluated. A criterion was recommended in which a maximum possible concentration by volume in the lower half of the pipe is not to exceed a value equal to " 0.9×0.65 ". The latter quantity represents the maximum attainable volume fraction under random packing conditions.

Although this criterion is considered a rather stringent one the computational results appear to be in close agreement with the experience values. The assumed factor of 0.9 still needs to be verified. Further study along this line is recommended.

APPENDIX A

NOMENCLATURE

A - Storage foundation area, L^{2}
AP - Area of pipe, L^{2}
A_{p} - Surface area of particle, L^{2}
AS - Water surface area, L^{2}
A_{s} - Surface area of a spherical particle, L^{2}
a - $1 / 3$ mean particle diameter, L
B - Coefficient of proportionality
C - Empirical constant
C_{a} - Reference solid concentration in pipe
C_{D} - Coefficient of drag
C_{L} - Solid concentration in lower half of pipe
C_{v}, C_{w} - Volume and weight fraction of solids input, res.
$C_{\text {vl }}, C_{v 2}$ - Volume and weight fraction of solids in $C_{w 1}, C_{w 2}$
CVF - Concentration volume factor
CVT - Actual Transport Concentration
Cvit, $C_{\text {v2t }}$ - Total volume of solid concentration suspension and saltation respectively

Cy - Solid concentration at y distance from pipe's bottom
D - Pipe diameter, L
d - Particle diameter, L
d - Characteristic particle size, L
E - Annual Evaporation, LT^{-1}
e_{a} - Vapor pressure of air, FL^{-2}
e_{o} - Saturation vapor pressure, FL^{-2}
F_{D} - Force of Drag, $\mathrm{MLT}^{-2}=F$
$F_{g}-$ Force of gravity, $M L T^{-2}=F$
$F_{r m}$ - Froude Number, $V_{m} / g D$
$F_{\text {ro }}-$ Froude Number, $V_{o} / g D$
f_{L} - Fanning friction factor
$\mathbf{f}_{\mathbf{s}}{ }^{\text {- Material Constant }}$
f - Water supply factor
g - Gravity, LT^{-2}
H - Hold-up ratio
h - Head of water, L
i - Hydraulic gradient
K - Karman's constant
L - Pipe length, L
L - Pipe length between stations, L
L_{s} - Length of seepage path, L
MMT - Metric million tons, MLT ${ }^{-2 / T}$
MTY - Contracted million tons/yr, MLT ${ }^{-2} / T$
N - Number pumping stations
NS - Coal character index
OMC - Original moisture content
OP - Operation factor
P - Percent concentration
Pa - Area of particle projected on a plane, L^{2}
P - Percent change in solid concentration
Q - Volume flow rate, $\mathrm{L}^{3} \mathrm{~T}^{-1}$
R - Cumulative oversize particles retained

Re - Reynolds Number
r - Radius pipe, L
S - Specific gravity
SWR - Start-up water required, $L^{4} T^{-1}$
$T C$ - Tonnage, of coal, MLT^{-2}
TW - Tonnage of water, MLT ${ }^{-2}$
TSC - Total solid concentration
V - Velocity, LT^{-1}
V_{c} - Critical velocity, LT^{-1}
V_{o} - Particle settling velocity, L^{-1}
V^{\prime} o - Adjusted particle settling velocity for heavy medium, LT^{-1}
V_{s} - Actual velocity of solids, LT^{-1}
$\mathrm{V}_{\text {slt }}, \mathrm{V}_{\mathrm{s} 2 \mathrm{t}}$ - Total velocity of suspended and saltating solids, LTT
V_{SS} - Superficial velocity of solids, LT^{-1}
W - Wind velocity, LT ${ }^{-1}$
WPS - Water/pumping station, $\mathrm{L}^{3} \mathrm{~T}^{-1}$
WR - Total water required, $L^{4} T^{-1}$
WRT - Water required for transport, $L^{4} T^{-1}$
y - Distance from pipe bottom, L
B - Proportionality factor
β_{*} - Material constant
$\phi_{s}-$ Gaessler bed packing factor
γ. - Specific Weight, ML ${ }^{-2} \mathbf{T}^{-2}$
p. - Density, ML ${ }^{-3}$
ρ_{t} - Bulk fluid density of a mixture, $M L^{-3}$
v - Kinematic Viscousity, $L^{2} T^{-1}$

* - Particle sphericity

Subscripts

1, 2 - Suspension and saltation respectively
L, S, m - Solid, liquid and mixture respectively

APPENDIX B

COMPUTER PROGRAM

```
10 DIM VP2(3ø),DX(3ø),P(3\emptyset),DP(30),VP(30), CD(3ø), RE(30), CVI(3\emptyset)
```



```
30 DIM DT(10),DB(10),D(10),CWF(10)
40 REM
50 REM
6 0 ~ F O R ~ K = 1 ~ T O ~ 6 ~
70 READ DT(K),DB(K)
8D NEXT K
9ø FOR J=1 TO 5
10% READ D(J)
110 NEXT J
12Ø READ TW,NS,FV,SS,N,OP,CVF,B4,K4
130 REM
140 REM ******************
150 REM
                            CONSTANTS
l6\emptyset REM ******************
170 REM
18{ G=32.17% 'GRAVITY, FTP/SEC
190 EPS=.0D015 'PIPE ROUGHWESS, FT
2øD PHI=.65. VOLUME FRACTION SOLIDS PAKED IN TUBE
210 BETA=.28 'PROPORTIONALITY FACTOR
220 FSO=.ø076 'MATERIAL CONSTANT
230 REM
240 REM *****************************
250 REM COMPUTE BASIC PARAMETERS
260 REM *****************************
```

```
270 REM
28\emptyset MU=EXP(-9.566-.\emptyset215*TW+5.622*10^(-5)*TW^2) 'FOR TW<l \emptyset\emptyset D-F VISCOSITY
290 NU=EXP(-10.227-.\emptyset2164*'TW+5.781*l|^(-5)*TW^2) 'FOR TW<l\emptyset\emptyset D-F KINEMATIC VISCOUSITY
30\emptyset IF TW>1\emptyset\emptyset THEN MU=EXP(-9.6924-.01775*`TW+3.2175*10^(-5)*TW^ 2)
31\emptyset IF TW>10\emptyset THEN NU=EXP(-10.355-.1781*TW+3.3425*10^(-5)*TW^2)
320 ROL=MU/NU 'DENSITY OF WATER
330 ROS = SS*ROL 'DENSITY OF LIQUID
340 GAMA=ROL*G 'SPECIFIC WEIGHT OF WATER
350 REM
35\emptyset REM *****************************
370 REM PARTICLE SIZE DISTRIBUTION
380REM *****************************
390 REM
400 FOR K=1 TO 6
410 DT=DT (K)
420 DB=DB(K)
430 REM
44\emptyset LPRINT "******************************************************"
450 LPRINT " WATER REQUIREMENTS FOR COAL SLURRY TRANSORT"
460 LPRINT "******************************************************"
461 LPRINT
462 LPRINT
4 7 0 ~ R E M
480 FOR J=1 TO 5
49\emptyset D=D(J)
50\emptyset OPEN "I",#1,"B:SSF" 'INPUT SELECTED PART. SIZE DESIG. IN FILE
510 FOR I=1 TO N
520 INPUT #1,DX(I)
530 NEXT I
540 CLOSE#1 'CLOSE SCREEN SIZE FILE
550 FOR I=1 TO N
560 P(I)=\emptyset
570 IF DX(I)>DT GOTO 590
580 P(I)=10\emptyset*EXP(-(DX(I)/DB)^NS) 'PERCENT RETAINING, ROSIN-RAMMLER
590 NEXT I
600 DM=0
```

```
610 P(0)=99.99
62\emptyset DX ( ) =. Ø01
630 IT=1
640 FOR I=1 TO N
650 IF I>IT GOTO 730
660 IF DX(I)>DT GOTO 690
67g IT= I+1
680 GOTO 700
690 DX (I) =DT
7\emptyset\emptyset MDX(I)=(DX(I-1)+DX(I))/2 'MEAN SECTIONAL SIZE IN MM
71\emptyset DP (I) = (P(I-1)-P(I))/(I\emptyset\emptyset), 'DELTA PERCENTAGES
720 DM=DM+DP(I)*MDX(I) 'MEAN DISTRIBUTION SIZE
```



```
740 FOR I=1 TO (N+1)
750 IF I=(N+1) THEN MDX(I) =DM
760 IF I=(N+1) GOTO 780
770 IF I>IT GOTO 840
78\emptyset DX(I)=100\emptyset*MDX(I) ' CHANGE TO MICRON FOR SETTLING VEL. COMP.
79\emptyset IF DX(I)<=15\emptyset THEN VP(I)=EXP(-14.8@3+2.2412*LOG(DX(I)-.\emptyset446*(LOG(DX(I)))^2))
800 IF DX(I)<=150 GOTO 830
810 IF DX(I)>30\emptyset\emptyset THEN VP(I)=EXP(-7.4543+.9489*LOG(DX(I))-.\emptyset252*(LOG(DX(I))) ^2)
820 IF DX(I)<30\emptyset0 THEN VP(I)=EXP(-19.763+4.261*LOG(DX(I))-.2478*(LOG(DX(I)))^2)
830 DX(I)=DX(I)/1\emptyset\emptyset\emptyset 'CHANGE BACK TO MM
840 NEXT I
850 FOR I=1 TO (N+1)
860 IF I=(N+1) GOTO 886
870 IF I>IT GOTO 980
880 DX(I)=DX(I)/(25.4*12) 'CHANGE TO FEET FOR REYNOLDS NO. & DRAG COEFFICIENT
890 RE(I)=VP(I)*DX(I)/NU
9\emptyset\emptyset IF RE(I)<1\emptyset\emptyset\emptyset\emptyset\emptyset! THEN
    CD(I)=EXP(1.93489-. 262589*LOG(RE(I))+.0189006*LOG(RE(I))*LOG(RE(I)))
910 IF RE(I)<1\emptyset\emptyset\emptyset\emptyset THEN
    CD(I)=EXP(9.1019* (-1)+2.\emptyset6907*LOG(RE(I))-.104981*LOG(RE(I))*LOG(RE(I)))
920 IF RE(I)<4\emptyset\emptyset\emptyset THEN
    CD(I) = EXP(1.33574+.\emptyset\emptyset87991*LOG(RE(I))-.\emptyset\emptyset8345*LOG(RE(I))*LOG(RE(I)))
```

```
930 IF RE(I)<10\emptyset0 THEN
    CD(I)=EXP(4.07581-.81059*LOG(RE(I))+.0528908*LOG(RE(I))*LOG(RE(I)))
94ø IF RE(I)<lø\emptyset THEN
    CD(I)=EXP(6.25354-1.93306*LOG(RE(I))+.197017*LOG(RE(I))*LOG(RE(I)))
950 IF RE(I)<1\varnothing THEN
    CD(I)=EXP(4.2522l-.8569*LOG(RE(I))+.0714634*LOG(RE(I))*LOG(RE(I)))
960 IF RE(I)<l THEN CD(I)=24/RE(I)
970 DX(I)=DX(I)*25.4*12
980 NEXT I
990 REM
10日\emptyset REM *************************************
1010 REM VELOCITY OF MIXTURE DETERMINTATION
1g20 REM **************************************
1030 REM
1040 VM1=25
1050 CW=.5
1060 CV=(CW/ROS)/((CW/ROS) +(1-CW)/ROL) 'CONCENTRATION BY VOLUME DELIVERED
1070 IF CW<.5 GOTO l24ø
1080 REP=VMI*D/NU 'PIPE REYNOLDS NO.
1090 FL=.25*(1.325/((LOG(EPS/(3.7*D)+5.74/REP^.9) )^2)) 'FANNING FRICITON FACTOR
11\emptyset\emptysetVHW=(1.25*(10\emptyset*CV)^(.19))*(SQR(2*G*(SS-1)*D))*((DM/(25.4*12)/D)^(1/6))
1110 VHD=1.35*(SQR(2*G*D*(SS-1)))
112\emptyset VHZ=SQR(40*G*D* (SS-1)*CV/(SQR(CD(N+1))))
1130 VHY=9.8*D^(.33)*VP(N+1)^.25*(SS-.4)
1140 VHT=SQR(2.411*(CV`(.2263))*(FL^(-.2334))*(CD(N+1)^(-.384))*D*G*(SS-1))
115\emptyset VH=(VHW+VHD+VHZ +VHY+VHT)/5
116\emptyset VM=FV*VH
1170 IF ABS(VM-VM1)>.1 THEN VMI=VM ELSE GOTO 1190
1180 GOTO 108\emptyset
1190 REM
1200 REM **************************************
1210 REM
MAIN PROGRAM
122\emptyset REM **************************************
1230 REM
1240 FRM=VM/(SQR(G*D)) 'FROUDE NUMBER
1250 PI'T=\emptyset 'TOTAL PERCENTAGES
```

```
1260.CV1T=\emptyset 'TOTAL CONCENTRATION IN SUSPENSION
127@ CV2T=\emptyset
1280 VS1T=0
1290 VS2T=\emptyset
130\emptyset VST=0
1310 MCVTl=0
'TOTAL CONCENTRATION IN SALTATION
'RESULTANT SUSPENSION VELOCITY
'RESULTANT SALPATION VELOCI'TY
'RESULTANT SOLID VELOCITY
'HOLD-UP CONCENTRATION
1320 FOR I=1 TO N
1330 IF I>IT GOTO 1900
1340 REM
1350 REM
1360 REM **********************************
1370 REM FLOW PATTERN DELINEATION
1380 REM **********************************
1390 REM
140\emptyset LET CVI(I)=.99*CV
1416 DCV1=CV1(I)
1420 DCV1=.5*DCV1
1430 ROM1=(CVIT+CV1(I)* (1-PIT))*(ROS-ROL)+ROL 'BULK FLUID DENSITY
1440 FRO=VP(I)/(SQR(G*D))
1450 B=FRO^(-1/3)
1460 A= (1/PHI)*(SQR ((3/4)* (ROM1/(ROS-ROM1))))*((FRM/3.7)*B)
1470 CW2(I)=CW* ((FRO/(.1*PHI))*(SQR((3/4)*CD(I)))*((CV/PHI)^A))
1480 IF CW2(I)>CW GOTO 157@
1490 CV2(I)=(CW2(I)/ROS)/((CW2(I)/ROS)+(1-CW2(I))/ROL)
150\emptyset CW1 (I)=(CV1 (I)*ROS)/((CVI (I) *ROS) +(1-CVI (I))*ROL)
1510 CV3=CV1(I)+CV2(I) 'CHECK FOR CORRECT ASSUMPTION OF CV1(I)
1520 RATIO=CW2(I)/CW 'CHECK FOR PART SUSPENSION
1530 IF RATIO>.99 GOTO 1570
15.40 IF ABS(CV-CV3)<.\emptyset0l GOTO 1640
1550 IF CV > CV3 THEN CVI(I)=CVI(I) +DCVI : GOTO 1420
1560 IF CV < CV3 THEN CVI(I)=CV1(I)-DCVl : GCrO 142\emptyset
1570 CV2(I) =CV*.99
1580 CV1(I)=CV*.01
1590 REM
1600 REM ********************************:
```

```
1610 REM .. PARTICLE VELOCITY
1620 REM ************************************
1639 REM
1640 PH= (1-PHI)}/\textrm{PHI
1650 CWl (I)=(CV1 (I)*ROS)/((CV1 (I)*ROS) +(1-CVl(I))*ROL)
1660 CW2(I)=(CV2(I)*ROS)/((CV2(I)*ROS)+(1-CV2(I))*ROL)
1670 ROMl=(CVIT+CVI(I)*(1-PIT))*(ROS-ROL)+ROL
1680 A= (1/PHI)*(SQR((3/4)*(ROM1/(ROS-ROM1))))*((FRM/3.7)^B)
1690 Bl=(2*FRO^(-1/3))-1/PHI
1700 Al=(PH/PHI)* (SQR((3/4)* (ROMI/(ROS-ROMl))))*((FRM/3.7)^Bl)
1710 VSR=(CW2(I)/CW)*(.1*PHI)/(FRO*(SQR((3/4)*CD(I))))*PH*(CV/PHI)^(-Al)
1720 BETA1=BETA*(CW2(I)/CW)*(I/VSR) 'MATERIAL CONSTANT
1730 FSl=FSO*(1-(CW2(I)/CW)*VSR)
1740 LET VR=.99 'SOLIDS TO MIXTURE VELOCITY RATIO
1750 Y=((FRO/FRM) 2)* (1-(1/VR)*CV)
1760 Z=FSl*(ROS/(ROS-ROL))-FL*(ROL/(ROS-ROL))*((1-CV)^2)/(VR-CV)
1770 M=Y*(BETAl+(VR^2)*(FRM/2)*2)
178\emptyset VRI=1-SQR(M)
1790 IF ABS(VRI-VR) >.0日1 THEN VR=VRI : GOTO 1750
1800 VS(I)=VR*VM
181\emptyset CVT(I)=1/VR*CV
1820 VS1 (I)=VSR*VS (I)
1830 VS1(I)=(VS(I)*CVT(I)-VS2(I)*CW2(I))/CW1(I)
1840 VST=VST+VS(I)*DP(I)
1850 VSl'r=VS1'r+VS1(I)*DP(I)*(CVl(I)/(CV1(I)+CV2(I)))
1860 VS2T=VS2T+VS2(I)*DP(I)*(CV2(I)/(CV1(I)+CV2(I)))
1870 CV1T=CV1T+CV1(I)*DP(I)
1880 CV2T=CV2T+CV2(I)*DP(I)
1896 PIT=PIT+DP(I)
1900 NEXT I
1910 REM
192g REM ***************************
1930 REM WATER DETERMINATION
194| REM **************************
195g REM
1960 CW1T=(CV1T*ROS)/((CV1T*ROS)+(1-CVIT)*ROL)
```

```
1970 MCVT=VM/VST*CV
1980 SCV=CVlT+CV2T
1990 VSS=CV*VM
2øø\emptyset AP=3.14*(D^2)/4
2010 QS=VST*MCVT*AP
2020 VL=(VM-MCVT*VST)/(1-MCVT)
2030 QL=VL*(1-MCVT)*AP
2040 'rC=QS*(360日*24*365*OP)*GAMA*SS/220\emptyset
2050 TCW=QL*(36ø\emptyset*24*365*OP) *GAMA/2200
2060 RTW=TCW/TC
2080 R=D/2
2090 ROM=CV1T*(ROS-ROL)+ROL
2100 VP(N+1)=VP(N+1)*SQR(((ROS/ROM)-1)/((ROS/ROL)-1))
2110 USTAR=SQR(FL*VM^2/2)
2120 2l=VP(N+1)/(B4*K4*USTAR)
2130 AD =(1/3)*(DM/(25.4*12))
2140 P=\emptyset
2150 T=0
2160 X3=(R-AD)/R
2170 DH=-ATN(X3/SQR(-X3*X3+1))+1.5708
2180 FPP=3.14159/90
2190 PP2 = (3.14159/2) +FPP/2
2200 FOR H=DH TO (2*PP2) STEP FPP
2210 Tl=((1+COS(H))/(1-COS(H)))^Z1*(SIN(H))^2*FPP
2220 T=T+T1
2230 NEXT H
2240 CA=MCVT*AP/(2*R^2*((AD/(2*R-AD))^21)*T)
2250 FOR H=DH TO PP2 STEP FPP
2260 Y=R-R*COS (H)
227@ CY=CA*((2*R-Y)/Y*(AD/(2*R-AD)))^21
2290 Pl=CY*(SIN(H))^2*FPP
2300 P=P+P1
2310 NEXT H
232@ CL=2*R^2/(AP/2)*P
2330 CH=CVF*PHI
2340 IF CL<CH GOTO 2380
```

```
2350 IF ABS(CL-CH)>.01 THEN CW=CW-.01
2360 IF CW<.3 GOTO 2440
2370 IF ABS (CL-CH)>.01 GOTO 1060
2380 LPRINT "DT,D,CVT,CL= ";DT,D,MCVT,CL
2390 LPRINT "VP,VM,VS,VL= ";VP(N+1),VM,VST,VL
2400 LPRINT "CW,TC,TW,TW/TC= ";CW,TC,TCW,RTW
242g LPRINT
2423 LPRINT
2430 GOTO 2460
2440 LPRINT "TOP SIZE, PIPE DIA, SUSP./CW RATIO";DT,D,CWF
2450 LPRINT "IMPROBABLE PARTICLE SIZE-PIPE DIA. COMBINATION"
2453 LPRINT
2454 LPRINT.
2460 NEXT J
2461 LPRINT
2462 LPRINT
2464 LPRINT "WATER TEMP. = "; TW
2465 LPRINT "SPEC. GRA. COAL = "; SS
2466 LPRINT "SIZE DIST. INDEX = "; NS
2467 LPRINT "MAX. PERM. CONC. = "; CH
2470 NEXT K
2480 DATA 1.19,.26,3.125,.58,9.525,2.2,12.7,2.8,25.4,5.8,50.8,12.5
2490 DATA 1,1.5,2,2.5,3
250\emptyset DATA 7.0,.9,1.2,1.35,20,.98,.90,.92,.4
2510 END
```


REFERENCES

1. Aude, T.C. and J.P. Chapman, "Coal/Methanol Slurry Pipelines", Pipeline Systems Inc. (Aude,1980)
2. A Water Resources Technical Publication, "Design of Small Dams", 1977. (A.W.R.T.P.,1977)
3. Bonnington, S.T., Experiments on the Hydraulic Transport of Mixed-size solids, British Hydromechanics Research Association, R.R. 637, Cranfield, Bedford, October 1959. (Bonnington,1959)
4. Buck, Phd. Alan C., Manager, Environmintal Affairs Gulf Interstate Engineering Company, "Negligable Environmental Impact of Coal Slurry Pipelines".(Buck,1978)
5. Campbell, T.C., U.S. Department of the Interior Bureau of Mines, "Coal Slurry Pipelines: Eminent Domain and Water Issues", Nov. 1976. (Campbell,1976)
6. Campbell, T.C., U.S. Department of Energy Report, "Coal Slurry Pipelines: Water Laws Customs and Availability", No. FE/EES-78/6, June 1978. (Campbell,1978)
7. Committes on Interior and Insular Affairs and Public Works and Transportation, "Coal Pipeline Act of 1981", H.R. 4230, July 22, 1981. (C.I.I.A.,1981)
8. Currens, James C., Geologist, University of Kentucky, Kentucky Geological Survey, 1982. (Currens,1982)
9. Davis, George H. and Leonard A. Wood, United States Geological Suryey, "Water Demand for Expanding Energy Development, Circular 703. (Davis,Cir 703)
10. Durand, R. "Basic Relationship of the Transportation of Solids in Pipes-Experimental Research," Proc. Int'l Assn. of Hyd. Research, Minneapolis, Minn, 1953. (Durand,1953).
11. Freezer, Jim, Department of Water Resources, Frankfort, Kentucky 1982. (Freezer,1982)
12. Godwin, Judy and Stanley E. Manahan, Environmental Science and Technology, "Interchange of Metals and Organic Matter between Water and Subbituminous Coal or Lignite Under Simulated Coal Slurry Pipeline Conditions", V. 13,N.9, 1979. (Godwin,1979)
13. Gaessler, H., Experimentelle und theoretische Untersuchungen uber die Stromungsvorgange beim Transport von Feststoffen in Flussigkeiten durch horizontale Rohrleitungen, Doctoral Disseration, Technische Hochschule, Karlsruhe, West Germany, 1967. (Gaessler,1967)
14. Govier, F.W., K. Azia, The flow of Complex Mixtures in Pipes, "Horizontal flow of Gas-Solid and LiquidSolid Mixtures in Pipes", Litton Publishing Company, 1972. (Govier,1972)
15. Harr, Milton, "Groundwater and Seepage", 1962.(Harr,1962)
16. Harte, John and Mohamed El-Gasseir, Science, "Energy and Water", V 199, 1978. (Harte,1978)
17. Jufin, A.P. "Hydromechanization," (Gidromehanizacija). Izdatelstvo po stroitelstvu. Mosdva, 1965. (Jufin,1965)
18. Kentucky Department of Transportation, "Kentucky Coal andIts Transportation Impacts",1974.(K.D.O.T.,1974)
19. Kao, D.T. and Weijian Li, "System review of Energy Efficiency for Coal Slurry Transport", 1982 . (Kao,1982).
20. Kao, D.T. and W.D. McDonogh, "Coarse Coal Slurry Loading and Unloading of Ships morred Offshort," AIME Conf. Paper, Denver, Colorado, l98l. (Kao, 1981)
21. Kuhn, Jim, Department of Water Resources, Frankfort, Kentucky, 1982. (Kuhn,1982)
22. Mathtech, Inc., Report for Appalachain Regional Commission, "Appilicability of Coal Slurry Pipelines to the Appalachian Region", Vol 1, ARC 77-202/co-5896, Sept. 1978. (Mathtech,1978)
23. McDaniel, Roger, "Commerce Clause and Water Availability Issues Concerning Coal Slurry Pipelines."Natural Resources Lawyer, Vol Xll, No. 3 (McDaniel,1979)
24. Moore, James W., Department of Civil Engineering, University of Arkansas, "Water Quality Aspects of Coal Transportation by Slurry Pipelines. (Moore, 1977)
25. Newitt, D.M., J.F. Richardson, and C.A. Shook, Symposium on Interaction Between Fluids and Particles, London, 1962 , Proc., p 87. Published by Institution of Chemical Engineers, London. (Newitt,1962)
26. Office of Technology Assessment, U.S. Congress, "A Technology Assessment of of Coal Slurry Pipelines, March 1978. (O.T.A.,1978)
27. Oversight Hearings, "Coal Slurry Pipeline Research and Development", Ninety-fourth Congress, second session, Vol. iv, Jan. 29, 1976. (Oversight Hearings,1976)
28. Palmer, Richard N., Ivan C. James, II and Robert M. Hirsch, U.S. Geological Survey, National Center, Restion Virginia, Hydrological Sciences-Bulletin-des Science Hydrologigues, "Comparative Assessment of Water Use and Environmental Implications of Coal Slurry Pipelines" Dec. 1978. (Palmer,1978)
29. Reed, N.T., Huston Lasw Review, "An Analysis Technical and Legal Issues rasied by Development of slurry Pipelines", V. 13.538, 1976. (Reed,1976)
30. Richardson, J.F. and M. McLeman, Trans. Inst. Chem. Engineers., 38, 257 1960. (Richardson,1960)
31. Soo, S.L., and G.J. Trezek, Ind. Engineering Chemical Fundam., 5, 388, 1966. (Soo,1966)
32. Soo, S.L., J.A. Ferguson and S.C. Pan, "Feasibility of Pneumatic Pipeline Transport of Coal," Inersociety Conf. on Transportation, Altanta, Ga., 1975. (SOO,1975)
33. Santhanam, Chakra J., Stanley E. Dale and Ravidra M. Nadkarmi, "Non-Water Slurry Pipelines-Potential Techniques", Arthur D. Little, Inc. (Santhanam,1981)
34. Turian, R.M. and T.F. Yuan, "Flow of Slurries in Pipelines," A.I.Ch.E.J., V. 23, 1977. (Turian, 1977)
35. Utterback, James, Thesis, "Hydralics of an on-line Solid-liquid seperation system." University of Kentucky, 1977. (Utterback,1977)
36. Viessman, Warren, John Rnapp, Gary L. Lewis and Terence E. Harbaugh, "Introduction to Hydrology", 1972. (Viessman,1972)
37. Wasp, E.J., J.P. Kenny, and R.L. Gandhi, "Solid-Liquid Flow: Slurry Pipeline Transportation." Trans. Tech. Publications, Ulausthal, Germany, 1977. (Wasp, 1977)
38. Zandi, I. and G. Govatos, "Heterogeneous Flow of Solids in Pipelines," Pro,. Hyd. Div. J., ASCE, v. 93, n. 3, pp 145-59, 1966. (Zandi,1966)
