
University of Kentucky
UKnowledge

KWRRI Research Reports Kentucky Water Resources Research Institute

9-1983

Water Requirement for Coal Slurry Transportation
Digital Object Identifier: https://doi.org/10.13023/kwrri.rr.146

David T. Kao
University of Kentucky

Sandra L. Rusher
University of Kentucky

Right click to open a feedback form in a new tab to let us know how this document benefits you.

Follow this and additional works at: https://uknowledge.uky.edu/kwrri_reports

Part of the Hydrology Commons, Natural Resources Management and Policy Commons, and the
Water Resource Management Commons

This Report is brought to you for free and open access by the Kentucky Water Resources Research Institute at UKnowledge. It has been accepted for
inclusion in KWRRI Research Reports by an authorized administrator of UKnowledge. For more information, please contact
UKnowledge@lsv.uky.edu.

Repository Citation
Kao, David T. and Rusher, Sandra L., "Water Requirement for Coal Slurry Transportation" (1983). KWRRI Research Reports. 57.
https://uknowledge.uky.edu/kwrri_reports/57

http://uknowledge.uky.edu/?utm_source=uknowledge.uky.edu%2Fkwrri_reports%2F57&utm_medium=PDF&utm_campaign=PDFCoverPages
http://uknowledge.uky.edu/?utm_source=uknowledge.uky.edu%2Fkwrri_reports%2F57&utm_medium=PDF&utm_campaign=PDFCoverPages
https://uknowledge.uky.edu?utm_source=uknowledge.uky.edu%2Fkwrri_reports%2F57&utm_medium=PDF&utm_campaign=PDFCoverPages
https://uknowledge.uky.edu/kwrri_reports?utm_source=uknowledge.uky.edu%2Fkwrri_reports%2F57&utm_medium=PDF&utm_campaign=PDFCoverPages
https://uknowledge.uky.edu/kwrri?utm_source=uknowledge.uky.edu%2Fkwrri_reports%2F57&utm_medium=PDF&utm_campaign=PDFCoverPages
https://uky.az1.qualtrics.com/jfe/form/SV_9mq8fx2GnONRfz7
https://uknowledge.uky.edu/kwrri_reports?utm_source=uknowledge.uky.edu%2Fkwrri_reports%2F57&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1054?utm_source=uknowledge.uky.edu%2Fkwrri_reports%2F57&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/170?utm_source=uknowledge.uky.edu%2Fkwrri_reports%2F57&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1057?utm_source=uknowledge.uky.edu%2Fkwrri_reports%2F57&utm_medium=PDF&utm_campaign=PDFCoverPages
https://uknowledge.uky.edu/kwrri_reports/57?utm_source=uknowledge.uky.edu%2Fkwrri_reports%2F57&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:UKnowledge@lsv.uky.edu


WATER REQUIREMENT 

FOR 

Research Report No. 146 

COAL SLURRY TRANSPORTATION 

By 

David T. Kao 

Principal Investigator 

Sandra L. Rusher 

Research Assistant 

Project Number: 

Agreement Number: 

Period of Project: 

A-089-KY (Completion Report) 

14-34-0001-2119 (FY 1982) 

February 1982 - September 1983 

Water Resources Research Institute 
University of Kentucky 

Lexington, Kentucky 

The work upon which this report is based was supported in part 
by funds provided by the United States Department of the Interior, 
Washington, D.C., as authorized by the Water Research and 
Development Act of 1978. Public Law 95-467. 

September 1983 



DISCLAIMER 

Contents of this report do not necessarily reflect the 

views and policies of the United States Department of the 

Interior, Washington, D.C., nor does the mention of trade 

names or commercial products constitute their endorsement 

or recommendation for use by the U.S. Government. 

ii 



ABSTRACT 

The amount of water required for coal slurry 
transportation is a function of the coal properties and the 
magnitude of coal movement. The pipeline system 
chacteristics and the method of slurry preparation also 
affects the overall water requirement of the system. In the 
present study methodologies are developed based on reported 
and modified coal slurry flow correlation equations to 
determine the quantity of water needed under various coal 
transport and flow conditions. Auxiliary water requirements 
including start-up and flushing water storage; related 
evaporation and seepage losses are also included, A 
computer program and several monographs are presented to 
provide a quantitative estimation of water requirements for 
fine to coarse coal slurry transport. The results are 
useful to the slurry pipeline design engineers in providing 
essential information for state and local water allocation 
policy determination. 

DESCRIPTORS: Water Demand*, Water Allocation*, Slurries*, 

Pipe Flow, Pipelines, Coal, Water Requirements* 

IDENTIFIERS: Coal Slurry Pipelines, Coal Slurry Transportation, 

Coal Slurry Pipeline Design 
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CHAPTER 1 

INTRODUCTION 

The outlook of our nation's energy picture has been a 

topic of discussion since the early 1970's when the Arab oil 

embargo took place. The embargo lead us to realize the 

serious security vulnerability a nation too dependent upon 

imported oil as a major source ~f energy. The vast coal 

reserves in the United States are once again being 

considered as available energy source for domestic needs as 

well as for export. The availability of transportation 

systems that can economically serve the coal movement needs 

was therefore, investigated by many researchers in order to 

determine the feasibility of extended use of these vast 

coal reserves. 

1.1 National~ Utilization Outlook 

It is estimated that the United States could operate on 

known coal reserves until the year 2280. Even with an 

increase in consumption the supply of coal from these re­

serves could last 200 years. Usage of these coal reserves 

would allow the United States to become less dependent upon 

imported oil. Based on the Fede~al Energy Administration 

(1976) scenarios, and extrapolation from the existing data, 
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Decker (1978) presented an energy supply and demand 

projection to the year 2000 as shown in Table 1.1. 

In Table 1.1, it can be seen that by the turn of the 

century the predicted use of coal as an energy source will 

increase from the current level by a factor of three plus. 

Coal will become a primary energy source which will supply 

37% of the nation's energy needs by the year 2000. This 

represents an increase from today's figure of nineteen 

percent, 

The intervention by the Federal Government gives another 

reason for increased coal utilization. Requirements were 

imposed on electric power plants to convert their boiler 

fuels from gas and oil to coal. The "United States requires 

that low sulf~r fuels be used to the maximum extent 

practical where necessary to minimize adverse impacts on 

public health" (Reed,1976). Th~se electric power plants 

are not always located where the coal is deposited or 

produced. This creates a complex transportation problem. 

There are currently five transportation methods by which 

coal, or the energy derived from coal, can be transported. 

These methods include barge, rail, truck, pipeline, and 

electric power transmission. Each of these transportation 

methods has its advantages and application limits. 

Barging, for example, is considered to be an energy 

efficient way of coal transportation but must have an ade­

quate network of waterways and available facilities. 

Trucking is more suitable for short hauls and is not a very 
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Table 1.1 Energy Supply· and Demand Project 
in quads* per year (Decker, 1978) 

FEA 1976 reference 
scenario basis-imported oil price­

projection, to, $13/barrell, in 1975 dollars 

Energy 
( 1) 

1974 
( 2) 

Coal 13.2 
Petroleum 33.5 
Natural Gas 22.0 
Nuclear 1.2 
Geothermal/hydro-
electric/solar 3.3 

Total 

Resiaential/ 
commercial 

Industrial 
Transport. 
Electrical 
gener. 

Synthetics 
Total 

73.2 

13.9 
20.9 
18.4 

20.0 

73.2 

1980 
( 3) 

1985 
( 4) 

(a) Energy Source 

15.7 
35.6 
22.7 
3.9 

3.7 

81.6 

20.6 
41.5 
24.2 

8.7 

3.9 

98.9 

(b) Energy Use 

12.7 
23.1 
20.1 

25.7 

81.6 

14.8 
27.1 
23.2 

33.7 
0.1 

98.9 

*quad = 101 5 BTU 

1990 
(5) 

25.9 
50.0 
22.8 
13.3 

4.2 

116.2 

16.6 
31.1 
25.3 

42.9 
0.2 

116.2 

2000 
( 6) 

50 
40 
10 
20 

ls 

135 

19 
34 
26 

53 
3 

135 
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energy efficient system. Energy transportation by 

transmission of electric power generated at the coal source 

will require large quantities of cooling water at the coal 

mine where once-through open or recirculating water based 

systems are· used. Besides, the power losses for long 

transmission systems can be extensive. 

The limitations in rail transport capacity was analyzed 

by Buck (1978). By 1985, an estimated 18.6 million carloads 

of coal will be moved each year over an average distance of 

430 miles. This increased coal transport traffic plus the 

railways usual commerce is projected to exceed the capacity 

of the system. The Vice President of Burlingtion Northern 

Railways estimated that this increase in rail traffic would 

triple their current car inventory. Rail tracks and 

facilities, reportedly, would be overloaded resulting in a 

circuitous routing of coal unit trains. Such a consequence 

could lead to additional costs in time and tariff. 

1.2 Kentucky~ Movement 

Kentucky is the nation's largest coal producing state. A 

recent Geological Survey report indicated the State as 

having an estimated 40 billion ton coal reserve, which is 

equivalent to approximately 8 percent of the total coal 

reserves in the United States. In terms of coal 

production, in 1981 Kentucky provided 19.1 percent of the 

nation's output. 

~ince Kentucky retains, for its own use approximately 3.0 

percent of the Eastern coal and 30 percent of the Western 



5 -

coal (Kentucky Department of Transportation, K.D.O.T.,1974), 

the utilization of various coal transport systems is exten­

sive. Presently coal is transported out of state by rail, 

river or highway. However the state's coal transit systems 

in many areas of Kentucky's coal fields is approaching or 

has reportedly reached capacity. 

A potential alternative for coal transport is by 

pipeline this includes pneumatic and coal slurry 

transportation. Applications for pneumatic pipelines in the 

coal industry to transport coal from the mine or deliver 

refuse to the mine for backfill have been tried out recently 

in England by the British Coal Board. For relatively short 

distances pneumatic transport systems appear to be an 

economical alternative to belt conveyor and trucking 

transportation (Oversight Hearings, U.S. Congress, 1976). 

More extensive studies concerning the technological aspect, 

economic analysis and general safety of this system has been 

conducted and reported by Seo & et al. (1975). 

1.3 Development Qf. Slurry Pipelines 

A coal slurry pipeline transports coal particles by a 

carrying medium, usually water, through a pipeline. A 

schematic drawing depicting the various processes involved 

in and potential long and short distance applications of the 

coal slurry pipeline is shown in Fig.I.I. This concept was 

first patented in the late 19th century but was not put 

into industrial use until 1914 in London, England. A short 

slurry pipeline was then used to unload coal from barges on 
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the Thames River for use in a nearby electric power 

generation plant. 

This technology was utilized in the United States for 

long distance coal transport by the Consolidation Coal Com­

pany in 1957. A 10 inch diameter pipeline originating in 

Cadiz, Ohio and terminating at a power plant, near Cleveland 

Ohio, conveys coal 108 miles (Godwin,1979). After 6 years 

of successful operation and delivering 1.3 million tons of 

coal annually, the slurry pipeline was shut down due to the 

development of the rail unit-train, whicb lowered rail 

tariffs from $3.47 per ton of coal to $1.88 per ton of coal, 

making the operation of the slurry pipeline uneconomical. 

Since that time there have been only a few slurry transport 

lines built in the United States with only one long 

distance coal slurry pipeline in operation today. 

The 273-mile Black Mesa pipeline is the only coal slurry 

pipeline operating in the United States at the present time 

(1983). This line runs from the Black Mesa mine in 

northeastern Arizona to the Mohave Power Plant in Nevada. It 

carries approximately 4.8 million tons of coal each year 

and has been under continuous operation since 1970 

(Godwin,1979). Successful operation of this line sparked 

development of other coal slurry pipelines including the 

planned 1003 mile ETSI (Energy Transport Systems Inc.) 

pipeline to deliver 25 million tons of coal annually from 

Wyoming to Arkansas. 

Florida Gas Company and Fluor Corporation proposed a 

1,500 mile pipeline to transport 40 to 50 million tons of 
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coal annually. This line is to carry coal from Eastern 

Kentucky-West Virginia and Western Kentucky-Illinois regions 

to the Georgia and Florida markets (Fig 1.2). These markets 

currently import some coal from South Africa and Poland 

because of reported high delivery cost of Kentucky coal. 

Other potential coal slurry pipelines from Kentucky 

were studied by the Appalachain Regional Commission 

(Mathtech,1978). Developed in the ARC report are 

computerized economic evaluations of these potential 

slurry pipelines for the region. Based on the results of the 

economic analysis these pipelines were classified into 

categories of highly probable, possible and unlikely. Of 

the initial 573 coal links in the region twenty were 

categorized as highly probable, from which nine pipelines 

for Kentucky were included as shown also in Figure 1.2. 

These nine pipelines will transport an estimated 53.0 

million tons of coal from Kentucky annually. These systems 

if established will require large quantities of water for 

their operation. 

1.4 water usage awl Energy Industry 

Water is required for nearly every imaginable major 

energy producing system. The amount of water withdrawal and 

consumed varies from system to system. Water withdrawal is 

defined as water removed from the source of supply but not 

necessarily consumed. On the other hand, water consumption 

indicates the amount of water rendered unavailable for 

further use. Thus, water discharged from a coal 



Figure 1.2 Potential Slurry Pipelines From Kentucky 
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gasification plant, if heavily polluted, is considered 

consumed water for many competing uses. water evaporated 

from a wet cooling tower or man made lake is unlikely to be 

precipitated as rain in the same region and is therefore 

consumed· water. Water used as a source of hydrogen for 

synthetic fuel production is also consumed water (Harte,1978). 

Water consumed per million BTU output for various energy 

systems is shown in Figure 1.3 (Davis,Cir.703). This com­

parison indicates coal slurry pipelines consume the least 

amount of water from a local source. 

It has been suggested that coal slurry pipelines utilize 

a third to a fifth of the water required for coal 

gasification and onsite generation respectively 

(Palmer,1978). As indicated in.the Huston Law Review the 

water required for mine mouth power plants, synthetic gas, 

and coal slurry pipelines is respectively, 100, 30, and 12 

gallons per million BTU delivered (Reed,1976). This 

estimate is slightly modified by the Office of Technology 

Assessment (McDaniel,1979). OTA estimated, that for 

exporting one ton of coal equivalent energy, electric power 

generation requires five to seven times as much water and 

coal gasification requires twice as much water, from the 

coal producing state, as a slurry pipeline. 

Another study was conducted using the Yampa River Basin 

in Northwestern Colorado as a setting (McDaniel,1979). Four 

energy transportation systems were analyzed to determine the 

water requirement for transporting 12.5 million tons of coal 

1000 miles to Houston, Texas. The four energy transportation 
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systems investigated were; onsite power generation with high 

voltage lines to deliver tbe electricity; onsite coal 

gasi fi.cation coupled with gas pipelines; coal slurry 

transport; and unit trains. It was found that on site 

generation would require 4.8 times as much water as coal 

slurry pipelines having a 50/50 coal to water ratio. On the 

other hand coal gasification needs about 3 times as much 

water as coal slurry pipelines with a similar coal-to- water 

ratio. The water required for rail was considered 

negligible in comparison (Figure 1.4). 

The Office of Technology Assessment (O.T.A.) of the 

United States Congress (1978) compared the water usage of 

the Jim Bridger Power Plant to two proposed Wyoming coal 

slurry pipelines. This power plant, which is lociated in 

Southwestern Wyoming and uses 5 million tons of coal, 

requires 25,000 acre-ft of water per year. While the two 

proposed Wyoming pipelines would each move 25 million tons 

of coal using 15,000 acre-ft of water. 

The major proposed pipelines in the West have plans to 

develop their own water sources. For example, the proposed 

Colorado-Texas line would utilize brackish, mineralized 

water which would not be suitable for human or agricultural 

use. The Wyoming-Arkansas pipeline would utilize water from 

deep wells in East Wyoming, that would be drilled by the 

pipeline company (Committees on Interior and Insular 

Affairs, C.I.I.A.,1981). 

Water for the Black Mesa pipeline is pumped from a deep 

extensive sandstone aquifer that underlies the Black Mesa 
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area. Approximately 3,200 acre-ft of water per year are 

withdrawn from this storage area. Since the recharge of 

these storage areas by precipitation is negligibly small 

eventual depletion of the water 

(Davis ,Cir. 703) • 

may be anticipated 

Other water sources for coal slurry pipelines include 

surface waters, primary effluent from treatment plants, 

irrigation return flows, reutilization of water from coal 

mining, and recovered slurry water (O.T.P..,1978). 

The suggested potential intermediate distance pipelines 

from Kentucky and the proposed long distance Kentucky-Florida 

Coal slurry transport system will need an estimated 50,000 

to 80,000 acre-ft (46 to 73 million gallons/day) of water, 

if fully implemented. 

To further analyze this water requirement the Appalachian 

Regional Commission (Mathtech,1978) estimated the water re­

quired for each of the nine intermediate distance pipelines 

for Kentucky. It based this estimate on the projected 

demand of coal from the potential supply zones in Kentucky. 

The breakdown of this projected 53.Bx104 acre-ft/year of 

water is shown in Table 1.2. 
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Table 1.2 Appalachian Regional Commissions Projection cf 
Water Required for Slurry Transportation. 
(Mathtech ,197 8} 

Slurry Zone Demand Zone Annual Coal Flow Water Required 
(MMTY} lOOOacre-ft/yr 

KY-2 NY-2 7.73 5.93 
KY-4 AL-2 17.71 13.57 
KY-4 AL-2 22.32 17.10 

AL-4 
KY-2 NC-3 9. 92 7.60 

SC-2 
KY-3 NC-3 12.63 9.68 

SC-2 
GA-3 

Each slurry pipeline requires a pumping station every 50 

to 100 miles, each pumping station would require power and 

water stored for emergency use. These pumping stations may 

be three to four acres in size and adjacent acreage of four 

to ten acres must be available for water storage 

(Buck ,1978). Therefore consideration must also be given to 

the availability of this additional water requirement. 

1.5 water Availability 

The 1975 aggregate water demand in the United States is 

outlined in Table 1.3 (Harte,1978). \'iben comparing the 

averaged annual freshwater runoff of about l,700km3/yr 

(l.377xl09 acre-ft/yr.) with the annual consumption of 

150km3 /yr, (0.125xl09 acre-ft/yr.), water availability does 

not appear to be a problem. One may find such a conclusion 

to be erroneous because the actual supply and demand of 

water are highly variable with respect to time and location. 

Precipitation and river flow can vary broadly from season to 

season and from year to year. 
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Table 1.3 Regional Runoff, 1975 Consumption, Per Capita Run­
off, and Consumption Per Unit Runoff. (Harte,1978) 

Region Mean Consum. PerCapita Consum./Mean 
Runoff Runoff Anr. Runoff 

Km3/yr Km3/yr 103m3 
person/yr 

New England 93.0 0.61 7.9 0.0066 
Mid-Atlantic 120.0 2.20 3.0 0.0180 
s. Atl. Gulf 270.0 5.10 10.2 0.0190 
Great Lakes 100.0 1.50 4.5 0.0150 
Ohio 170.0 1.70 8.0 0.0100 
Tennessee 57.0 0.39 17.0 0.0068 
Upper Miss. 90.0 1.30 4.6 0.0140 
Lower Miss. 100.0 7.60 17.0 0.0690 
Souris-Red-Rainy 8.6 0.17 12.0 0.0160 
Miss our 75.0 24.00 8.4 0.3200 
Arkansas 100.0 16.00 16.0 0.1600 
Texas Gulf 44.0 13.00 4.2 0.3000 
Rio Grande 6.9 6.00 3.5 0.8700 
Upper Colorado 18.0 3. 40 40.0 0.1900 
Lower Colorado 4.4 10.00 1.7 2.3000 
Great Basin 10.0 5.50 7.0 0.5500 
Pacific Northwest 290.0 18.00 44.0 0.0620 
California 86.0 34.00 4.1 0.4000 

6 Alaska 800.0 0.0077 2000.0 9.6*10-
Hawaii 18.0 0.77 22.0 0.0430 
United States 2471.0 151.0 11.0 0.0600 
u .s. (excluding 1653.0 150.0 7.8 0.0910 
Alaska & Hawaii) 

These variations in Table 1.3 demonstrate the importance of 

determining the fractional runoff which can be safely 

consumed. 

It is, therefore essential to recognize that the x-day, 

y-year low flow criterion would best account for supply 

limitations and ecological impacts intrinsic to the hydro­

logical characteristics of a geographic region. Harte (1978) 

defined ·the terms x-day, y-year as is the lowest flow rate. 

averaged over x consecutive days of the year expected, on 

the average, every y consecutive years. This flow is 

denoted by the symbol xQy. He determined that an allowed 
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percentage of the x-day, y-year low flow criterion should 

be formulated, to account for these limitations and impacts, 

where y>l and x<365. 

Actual figures showing the allowable consumptive and 

withdrawal rates for the nation's water basin areas were 

unattc1inable. According to Freezer (1982) these rates are 

controlled by preemptive Federal Regulations such as: flows 

reserved for navigation, flows reserved for water quality 

control, and flow related to the c,peretion of Federal 

projects. 

The availability of water to substantiate the operation 

of a coal slurry line is a determining factor in its 

utilization. The potential expansion of the originating 

area of the pipeline and the restrictive development of new 

resources due to the water commitment must be considered. 

This is cr,aracterized in the O.T.A.(1978) report on coal 

slurry pipelines. In its analysis four hypothetical coal 

slurry lines were proposed including a Wyoming to Texas and 

a Tennessee to Florida pipeline. These two slurry pipelines 

were estimated to use an average depleted flow of 3% of the 

Bighorn River and 0.1% of the Tennessee River respectively. 

When projected water demands for the 1985-2000 period were 

obtained, water requirements for three of the four lines 

were in excess of the legally available water supply, 

including the Wyoming-Texas pipeline (Freezer,1982). 

The Appalachain Regional Commission reported that water 

availability in Kentucky is substantial due to the Kentucky 
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coal field's access to the Ohio River Basin. This was 

substantiated by the Ohio River Basin CO![l![lission's 

projection indicating that the consumptive demands by all 

users for the year 2020 would require a fraction of the 

available water (Mathtech,1978). 

However, of the nine proposed Kentucky slurry pipelines, 

six are from the Eastern Kentucky coal field where coal is 

plentiful but water is locally scarce. The report from the 

Commission did not give specific consideration concerning 

the possible effect of slurry pipelines on local water needs 

and the state water resources allocation plan as a whole, 

except to point out that additional conservation measures 

may be needed. It did indicate however, that additional 

reservoirs may be required to supplement the amount of water 

presently available (Mathtech,1978). Accompanying the 

establishment of these new reservoirs and pumping station 

water storage ponds for coal slurry pipelines, one ![lUSt 

realize the effect of additional evaporation and 

infiltration as a part of the overall water consumption that 

would be attributed to the slurry system. 

1.6 Legal anli Environmental Aspects Qf water usage 

The Federal Government restricts the amount of water each 

hydrologic area may consume. Legal factors determine these 

restrictions, These basic legal factors include: Interstate 

Compacts, Prior Appropriations Doctrine, and water Rights 

System (O.T.A.,1978). 

Interstate Compacts place a practical limit upon the 
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quantity of water that maybe used in a given river basin or 

state. This restriction is supplerr,ented by state 

legislative restrictions on use and possible exercise of 

reserve rights of water. 

The Doctrine of Prior Appropriation was established in 

1855. It contains three distinct features. These features 

include: 

1) A right to use the water by diverting the water from a 
stream for beneficial use. 

2) The first to acquire the right has priority over 
later claimants. 

3) The water can be used at any location regardless to 
the distance the user is from the stream. 

Within the jurisdictions governed by the Prior Appropriation 

Doctrine the water available that is not already in 

benefical use is very limited (Carnpbell,1976). 

Water rights in the West are administered by the states, 

usually through a state engineer. Obtaining water rights is 

often a time-consuming and complicated affair, and the 

would be appropriator must often stand in line behind a 

series of prior applications. 

Another surface water law is the Riparian System. This 

restricts water use to areas adjoining the stream or water 

storage facilities from where the water is taken. Ground 

water laws vary from surface water laws. Ground water, in 

some states, is governed by the "English Rule". This rule 

states that water below the surface is the property of the 

land owner, who may withdraw it irrespective of the effects 

on others. In the Western States the "Reasonable Use Rule" 
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and the "Correlative Rights Doctrine" are used. These laws 

consider, respectively, the adjoining land owners rights 

must be considered and co-equal rights to adjoining 

landowners (Campbell,1978). 

Because the railroads are reluctant to voluntarily allow 

coal slurry pipeline crossings, Eminent Domain legislation 

which gives, the power to condemn private property for 

public use, may be necessary in order for the development of 

long distance interstate slurry pipelines. The use of 

eminent domain legislation to obtain slurry pipeline rights-

of-way is a drawback. Such use could impair future 

developments that depend on water. The Coal Pipeline Act of 

1981 restricts the usage of Eminent Domain. 

The enviromental disturbances of slurry pipeline systems 

are concentrated during the period of construction. Because 

of the linear extension of the system, the enviromental 

impact during this period is expected to be much greater 

than that due to construction of a power plant. The 

environmental disturbances of the construction of power 

plants is limited to a small geographic area. 

Once the system is completed, coal slurry pipelines are 

dustless, noiseless, (except for pumping station), and inde­

pendant of weather, traffic and priorities of other ship­

pers. They require approximately 30-50 ft of right of way, 

which can be revegetated and reused. Godwin fl979) cited 

that with proper water treatment practice, there will be no 

major coal slurry by-product water quality problems, leaving 

a pipeline rupture as the only main environmental hazard. 
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If a coal slurry pipeline ruptured a spray of suspension 

fluid would occur. Fine grained coal particles would 

accumulate in the immediate area. An immediate pressure 

loss would then be indicated at the following pumping 

station. This would signal a shut down of the line at the 

proceeding station terminating any further losses. The line 

could then be unearthed, repaired, reburied. 

1.7 Scope of the Present study 

A more precise estimate of the water requirements for 

(coai slurry transportation) will help coal slurrification 

and transportation will help to determine the true effect of 

such water movement on local water utilization programs. A 

method of estimating water needs for coal slurry pipelines 

is presently unavailable. In order to develop a methodology 

for such applications one must examine the entire system and 

include all parameters involved in a coal slurry pipeline 

operation. 

The concentration of coal slurry to be transported is 

usually referred to as 50 percent by weight. This means 

that the slurry mixture contains 50 weight percent of coal. 

Industrial practices have indicated that for fine and -ultra 

fine coal particles, up to 75 percent concentration by 

weight is possible. However, when economic and energy 

efficiency analysis results dictate the need for a slurry 

line to deliver coarser_ coal, the 50 percent weight 

concentration may be unattainable. Short and medium 

distance (50 to 200 miles range) coal slurry pipelines for 
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run-of-mine coal, coal collection branch lines or intermode 

applications are examples for which coarse coal-water mix­

ture may be more energy efficient because of savings in 

energy when dewatering the slurry coal (Kao,1982). A method 

for estimating the maximum permissible concentration will 

be attempted for it directly affects the quantity of water 

movement via slurry pipelines, 

In preparation for slurry transport the coal is crushed 

to desired particle sizes. Although this process can be 

controlled to a certain extent, size distribution after 

power crushing follows closely the relationship suggested 

by Rosin-Ramler in figure 1.5. This relationship is adopted 

in this study for illustrating the size distribution effect 

on the transport phenomena ~ncluding the possible solids 

hold-up. This will lead to a more realistic description of 

the slurry transport system. 

To obtain a specified annual throughput of coal, without 

pipe blockage, a critical transport velocity must be main­

tained. Determination of this velocity requires taking into 

account the particle size, the desired concentration, pipe 

diameter and other related flow properties. Modified slurry 

flow existing correlation equations will be adopted for use 

in this analysis. By applying the developed methodology 

the total water requirement can be estimated for a specific 

coal slurry pipeline and include all components of concern. 

Nomographs will be constructed to aid the practical 

application of the method developed. 
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CHAPTEF 2 

ANALYSIS 

The mechanics of solid-liquid flow is very complex. The 

trubulent eddies of the flowing liquid provide the primary 

carrying power to sustain the motion of the solid. Vertical 

and horizontal drag forces develop whenever a velocity 

differential exist between the velocity components of the 

solid particle and the carrying fluid. The vertical fluid 

drag force helps to maintain solids in suspension while the 

axial component of the fluid drag helps the solids to move 

forward along the direction of flow. The unbalancid gravi­

tational force component in the vertical direction becomes 

apparent for larger particles and manifests itself in 

heterogeneous solid particle distribution in the pipe with 

the lower half having higher solid concentration than that 

in the upper half of the pipe. The horizontal velocity 

differential between the two phases contributes to the 

phenomena of "hold-up". Some of these slurry flow properties 

are briefly reviewed in the following sections. 

2.1 !lt..a9. Force 

In almost all practical coal slurry mixtures the coal 

particles have a higher density than their carrying fluid. 

This fluid can be water, methanol, ethanal, oil or liquid 

co2 • As a submerged body a coal particle will fall 
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under the net effect of gravitation. This force has a 

magnitude which can be computed as: 

( 2 .1) 

where: 

d = particle diameter, L; 

p
5

, PL= mass density of soils and liquid respectively, 

ML-3 1 and 

g = gravitational acceleration, LT-2 

This net gravitational force, will cause the particle 

to accelerate first until the fluid drag develops due to the 

relative motion between the fluid and the solid to balance 

it. The fluid drag force, F0 , can be computed as: 

( 2 • 2) 

where: 

c0 = coefficient of drag; 

Pa= projectional area of the solid on a plane 

normal to the direction of solid motion, L2; and 

Vs,VL = velocities of solid and liquid respectively, LT-1 

When the two forces become equal in magnitude, Fg = F0 , 

acceleration stops and a constant particle settling velocity 

is attained. In a resting fluid, VL=O, the solid velocity 

under the balanced condition is referred to as terminal 

settling velocity, v0 • Substituting these into Eqs. 2.1 and 

2.2 and solving for V0 gives: 



V0 = 41s-ll 
-v 3 c0 
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where, sis the specific gravity of the solid. 

( 2 • 3) 

The above analysis is derived for a spherical particle 

with coefficient of drag, c0 , being a function of the parti­

cle Reynolds number: 

( 2 • 4) 

where, v is the kinematic viscosity of the fluid with the 

dimensions in L2T-l. This functional relationship is well 

established and is shown in Figure 2.1 by the curve marked 

• = 1.000 indicating that the particle is spherical in shape. 

For solid particles having irregular shapes, a shape 

factor, • , will have a value other than unity. The 

definition of a shape factor can be best expressed by the 

relationship: 

where, 

• = As/Ap ( 2. 5) 

As= the surface area of a sphere of the same 

volume as the particle, L2; and 

Ap = the surface area of the particle, L2. 

The effect of the shape factor on the coefficient of drag is 

also s.hown in Figure 2.1 for • = 0.9, 0.8, 0.7 and 0.6. 

The shape factor for a coal particle is commonly recognized 

as having a value of 0.7. Based on this shape factor the 

terminal settling velocity, v0 , for coal particles falling 

in water is shown to follow the relationship as depicted in 
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Figure 2.2 for a broad range of particle sizes. 

For computer applications, the c0 vs Re curve for coal 

particle with~= 0.7 may be expressed as: 

Co= exp(l.93489-.262589*LOG(Re)+.0189006*LOG(Re) 2 ) (2.6a) 

for Re<lOOOOO 

C0 = exp(-9.1019+2.06907*LOG(Re)-.10498l*LOG(Re) 2) (2.6b) 

for Re<lOOOO 

C0 = exp(l.33574+.008799l*LOG(Re)-.008345*LOG(Re) 2 ) (2.6c) 

for Re<4000 

C0 = exp(4.07581-.81059*LOG(Re)+.0528908*LOG(Re)2) (2.6d) 

for Re<lOOO 

Co= exp(6.25354-l.93306*LOG(Re)+.197017*LOG(Re)2) (2.6e) 

for Re<lOO 

C0 = exp(4.25221-.8569*LOG(Re)+.0714634*LOG(Re) 2 ) (2.6f) 

for Re<lO 

c0 = 24/Re (2.6g) 

for Re<l 

Similarly, several mathematical expressions are needed to 

describe the terminal settling velocity vs particle size as: 

V0 = exp(-14.803+2.2412*LOG(d-.0446*(LOG(d)2) 

for d<=lSO 

V0 = exp(-7.4543+.9489*LOG(d-.0252*LOG(d)2) 

for d>3000 

V0 = exp(-19.763+4.26l*LOG(d-.2478*LOG(d)2) 

for d<3000 

(2.7a) 

(2.7b) 

(2.7c) 
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2.2 Hold-up Effect 

As stated earlier fluid drag in the axial direction 

provides the actual carrying force to achieve the transport 

activity. Fluid drag does not exist unless a velocity 

differential between the solid particle and liquid phase 

exists with the former having a lower average velocity than 

the latter. This is generally true except in the case of 

transporting neutrally buoyant solids. 

As a result of the velocity differential, often referred 

to as slip velocity, the in-situ solid concentration 

increases. This phenomena is known as "hold-up". The 

magnitude of hold-up can be expressed in direct proportion 

to the velocity differential between the phases. 

Therefore, the hold-up ratio increases with increasing 

particle size, due to the greater slip velocity between the 

fluid and large solid particles. 

Although, many observations have been made to determine 

the slip velocity (Newitt and et al, 1962) and hold-up 

phenomena (Bonnington, 1959; Soo, 1966; and Richardson, 

1960) in solid/liquid and solid/gas flows, relatively few 

reliable measurements of these quantities are available. 

The observation results obtained bi previous investigators 

are normally limited to the specific conditions employed in 

their work without presenting a general correlation for 

future applications. 

In .the attempt to formulate new prediction equations for 

flow regime and pressure loss gradient, Gaessler (1967) 

derived a method which may be used for hold-up_ ratio evalua-
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tion. This method, was confirmed indirectly by the measured 

pressure loss gradient data for water suspensions of a 

number of different types of solids, including coal 

particles. This method is generally considered reliable for 

medium and coarse particles suspended in water (Govier, 

1972). 

The importance of the hold-up effect is reflected~in of 

increased in-situ solid concentration. This is also referred 

to by many as local or transport concentration as opposed to 

the actual input or'delivered solid concentration. This 

effect becomes more predominant as coarser particles are 

used in the transport system. 

Knowing that the maximum random packing for coal can 

reach a maximum of 62 to 65 percent by volume 

{Gaessler,1967; Kao,1981), a criterion can thus be 

established for the in-situ transport concentration of coal 

to not exceed a certain value in order to avoid pipe 

blockage. 

Further considerations should be given to the local solid 

concentration distribution. Because of the effect of the 

gravitational force, coal particles rarely reach a uniform 

dispersion _ throughout the pipe cross-section. Unless 

ultra-fine particles or extremely high velocities are used 

in the slurry mixture, the solid particles will be heavily 

concentrated in the lower portion of the pipe, leaving the 

upper portion with a solid concentration smaller than 

average (Durand, 1953; Newitt, 1962), This indicates that 

----·-------·------- ----
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the real control for the maximum local concentration should 

be placed in the lower portion of the pipe, instead of using 

the average value over the entire pipe cross-section as 

derived by Gaessler. 

To determine the local concentration distribution, a 

method derived on the bases of turbulent dispersion and 

momentum transfer will be employed (Kao, 1983). The average 

concentration of the lower portion of the pipe cross-section 

can be obtained by a simple integration technique. This 

concentration, rather than the average in-situ solid concen­

tration over the entire pipe cross-section will be used in 

determining the maximum permissible solid concentration. 

The actual water requirement can thus be estimated based on 

the delivered solid concentration corresponding to the 

specific maximum permissible value. A major influence on 

this value is the critical transport velocity of the solids. 

2.3 critical Transport velocity 

The critical transport velocity as mentioned above is 

defined for a slurry system as a velocity at which no 

sediment bed formation in the pipe takes place. Because of 

the complex nature of the slurry transport system, no 

prediction equation for the critical velocity was derived 

based strictly on theoretical considerations. None of the 

existing critical transport velocity correlations are proven 

to give reliable critical velocity predictions for 

solid/liquid mixtures containing distributed particle sizes. 

In an attempt to obtain an average value for the critical 
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transport velocity the following five commonly accepted 

correlation equations will be used. 

Durand (1953) 

Vc=l. 35/2gd (s-1) (2.Ba) 

Jufin (1965) 

( 2 • Bb) 

Zandi-Govatos (1966) 

(2.Bc) 

Turia-Yuan (1977) 

(2.Sa) 

Wasp (1977) 

( 2 • Be) 

Various notations used in the above Equations are defined 

as: 

Co = Drag coeff. of particle 

Cv = Delivered solid concentration by volume 

D = Pipe diameter, L 

d = mean solid particle diameter, L 

FL = Fanning friction factor 

F' = l.25*Cv 0.19 
L 

g = Gravity, LT-2 

s = Specific gravity of solid 

Vo = Particle terminal settling velocity, LT-l 
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The variation of the results of these correlations is 

demonstrated by substituting the following set of values 

into each equation for the corresponding er it ical velocity 

predictions. 

For: C0 =9.68 

V0 =.0853ft/s (mean) 

D=l.4ft 

DT=3.125mm 

FL=3.43-3 

NS=0.9 

the critical velocity given by: 

Durand 

Ju fin 

Zandi-Govato 

Turai-Yuan 

Wasp 

Vc=7.5805ft/sec 

Vc=5.6232ft/sec 

Vc=9.2864ft/sec 

Vc=7.0170ft/sec 

Vc=4.9343ft/sec 

Cw=O. 5 

Cv=0.427 

S=l.35 

An average of the above is obtained to give Ve= 6.89 ft/sec 

and is used for the determination of the desired mean slurry 

flow velocity. To insure steady transport the mean 

transport velocity of the system is chosen to be 20 percent 

higher than the critical velocity, or: 

( 2. 9) 

2.4 Effect Q.f. ~ Moisture on. water Requirement 

The inherent properties of coal can affect the behavior 

of system. For example, varying the specific gravity of the 

coal will alter the critical transport velocity. The mois­

ture contents of coal can affect the water requirements for 

slurry t_ransportation in two different ways: the inherent 

moisture moves along with the coal as part of the solid 
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which changes the coal particle density; the surface mois­

ture integrates with the carrying medium becoming part of 

the water supply. When the coal is crushed the inherent 

moisture is released and air fills the pores that once 

contained moisture. As a result, coal particle density may 

drop slightly. The percentage of total and surface moisture 

content can be obtained by the following: 

Total Moisture Content= 

ili.fil.. QQ.ll weightl =- (Bone !i.:.:l. ~ weight) 
Bone dry coal weight 

Surface Moisture= 

ili.fil.. ~ weight) =- lAi.J:. !i.:.:l. ~ weight) 
Bone dry coal weight 

These properties are known to vary from point to point even 

within the same coal seam as seen in Table 2.1 (Kuhn,1982). 

This prohibits a standard calibration and classification of 

the property for individual coal beds. Coal samples, there­

fore, must be analyzed from each mine site to determine the 

pertinent properties when hydraulic transport is considered. 

Table 2.1 Properties of Coal Received (Kuhn,1982) 

Location Average Average Specific 
County, Seam Moisture Btu/lb Gravity 

Hopkins, No. 9 8.00 12685 1.34 
Mulhenberg, No.9 9.95 13085 1.44 
Clay, Fireclay 4.90 14052 1.29 

Letcher, Amburgy 3.90 13085 1.40 
Harlan, High Splint 4.20 13815 1.30 
Letcher, Imboden 2.05 14172 1.32 
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2.5 Existing liQ..t.k Qil water Requirement Estimation 

Many attempts have been made to determine the quantity 

of water required for a coal slurry pipeline. The technique 

most commonly used includes a simplified calculation which 

takes into consideration only coal moisture content or coal-

to-water ratio. 

The effect of coal moisture can be demonstrated by a 

linear relationship which relates the water requirement 

directly to coal throughput. 

relationship can be written as: 

where 

MTY2000 ll-OMC/100 l 
YL 43560 

An equation for this 

(2.10) 

WRT = Water required for transport in acre-ft/year; 

MTY = Contracted coal in million tons/year; 

OMC = Percent original moisture content in coal; 

y L = specific weight of water in FL-3; and 
' the constants are for the conversion of tons and cubic feet 

to pounds of weight and acre-feet. 

In the development of this equation, it was implicitly 

assumed that for coal slurry transportation, a 50/50 coal to 

water weight ratio always holds true. A corresponding plot 

demonstrating water requirements in terms of coal throughput 

for constant moisture content is shown in Figure 2.3. 

In the study conducted by the Office of Technology 

Assessment,of the United States Congress (1978), this method 

was applied in estimating the water for four hypothetical 
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pipelines of different tonnage capacities and from differ­

ent coal regions (Table 2.2). 

Table 2.2 O.T.A.'s Hypothetical Coal Slurry Pipelines. 

PIPELINE 

Wyoming-Texas 
Montania-Minnesota/Wisconsin 
Tennessee-Florida 
Utah-California 

COAL 
(MTYl 

35.0 
13.5 
16.0 
10.0 

RANGE OF ANNUAL 
WATER REQUIREMENTS 

(ACRE-FT/YR} 
13,000-20,000 
6,000-8,000 

10,000-12,000 
6,000-7,000 

This analysis indicates that for each million tons of coal 

transported each year one must provide a given amount of 

water regardless what coal particle size distribution is 

involved and what the size of the pipeline is used. The fact 

of the matter is that, both particle size distribution and 

pipeline diameter are important parameters which affect the 

coal slurry system behavior and water requirement. Without 

considering these factors one may find the analysis as 

being a case of over simplification, 

When the coal-to-water ratio is taken as the principal 

factor influencing the quantity of water to be used, a 

different linear function relating the water requirement to 

the amount of coal shipped can be established. The United 

States Geological Survey National Center computed the water 

requirement for coal slurry pipeline systems (Palmer ,1978) 

with varying coal to water mixture ratio ranging from a 

40/60 to 60/40. Simple straightline relationships are 

obtained for water requirement as a function of coal 

- . ·------·--- --- ---·-----. 
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throughput as shown in figure 2.4. A cost analysis was also 

conducted over the same range of operating conditions to 

determine the feasible coal-to-water ratio. Figure 2.5 is a 

plot of the results of this analysis showing a decrease in 

pipeline cost as solid concentrations increase at first but 

pipeline cuts will increase when the coal content exceeds 

approximately 50 percent of the weight ratio. 

Such cost behavior of the system was attributed to the 

fact that as the solid concentration in the slurry 

increases, the total volume of slurry mixture decreases for 

the given weight of coal to be delivered resulting in using 

smaller pipe diameters. This accounts for some of the 

system cost savings. However, more and/ or larger pumps 

would be needed to overcome the greater friction energy loss 

resulted from transporting high concentration slurries. 

This, in turn, causes an increase in the overall system 

cost. 
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CHAPTER 3 

METHODOLOGY 

3.1 water Reguired ~~~Slurry Transportation 

Fine coal particles are assumed to behave as a pseudo­

homogeneous substance when transported as a slurry. Because 

of such behavior, the water required is a function of both 

the original moisture content of the coal and the coal-to­

water ra.tio. 

If the coal is crushed in water during the slurry 

preparation both the inherent moisture contained within the 

coal and the surface moisture become a part of the slurry 

components. In many cases this moisture may make up a 

significant part of the water required. Therefore, this 

source of water is taken into account when calculating the 

total water required for slurry transport. 

The concentration of the slurry mixture is the major 

determining factor in obtaining the water requirement for 

the coal. Low coal-to-water ratios would require relatively 

high quantities of water, whereas higher ratios would 

require lower quantities of water. The concentration of the 

slurry is expressed in terms of weight or volume fraction 

and is related to the coal-t_o-water ratio equally in those 

respective terms. If the concentration is 30 percent coal 

by weight the coal-to-water ratio would be 30/70 by weight. 

The same applies if the concentration is given in terms of 
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volume. 

The effect of water moisture and slurry concentration 

have been used individually to calculate the water required 

for coal slurry tr ans port as discussed earlier. Combining 

the two aspects would give a more useful general relation­

ship for determining the slurry transport water requirement. 

This relationship is expressed in Eq 3.1. 

WRT= ( (MTY* 2000) / (Y L * 43 560) ) * ( ( 1-CW) - ( OMC/10 0) ) 

where 

WRT = water requirement, acre-ft; 

MTY = Coal throughput, million short tons/year; 

OMC = Original moisture content of coal; and 

CW = Coal-to-water ratio by weight. 

( 3 .1) 

Dividing each side of Eq 3.1 by MTY, million tons of 

coal per year, the WRT may now be expressed in terms of the 

MTY as a water requirement coefficient. This relationship 

can be expressed graphically in terms of the orginal percent 

coal moisture and the coal-to-water ratio as shown in Figure 

3,1. Multiplying the obtained coefficient, RWRT, by the 

tons of coal per year, the total water required for fine 

coal slurry transport is obtained in acre-ft/year. 

3.2 water Regµired ~coarse~ Slurry Transportation 

Because of hold-up and gravitational effects, as 

discussed in the previous chapter, coarse coal particles do 

not behave as pseudo-homogeneous substances when transported. 

------------·--------------- - -··------·----·------------
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in-situ concentration, which is often greater than the 

delivered concentration, develops within the pipe as a 

result of hold-up. It is this concentration that will 

.limit the maximum quantity of coal the pipeline can 

transport. Therefore,in this study, a modified form of the 

Gaessler empirical correlation is needed to determine the 

maximum permissible volume of coal that can be safely 

transported in a horizontal slurry pipeline. The water 

requirement will then be computed for the pipeline system 

based on this coal to water ratio. 

3.3 Gaessler correlations~ Evaluating Hold-up Effect OJl In= 

liil Sol; d concentration 

Gaessler (1967) developed empirical relationships for 

estimating suspension and saltating bed load concentrations 

based on particle size, input concentrations and properties 

of the particles and fluid. ae further proposed a flow 

pattern criteria based on the ratio of the fully suspended 

solids, Cwl' to input weight concentration of coal, Cw, as 

shown in Table 3.1. 

Table 3.1 Flow pattern Criteria by Gaessler (1967) 

Um! Pattern 

Symmetric Suspension 
Asymmetric Suspension 
Moving Bed with Asymm. Suspen. 
Stationary Bed with Asymm. Suspen. 
Pipe Blocked 

1.0 
0.7- 1.0 
0.2-0.7 

0-0.2 
0 
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By applying the principle of the conservation of 

momentum the development of a correlation for predicting 

the ratio of the solid to mixture velocity was completed. 

From the results of these correlations the in-situ 

concentration due to the effect of hold-up can be estimated. 

The development of these relationships is briefly outlined 

below. 

Estimation of the suspending and saltating solids begins 

with a simple mass balance equation. The sum of the two 

concentrations must equal the total input solid fraction: 

where 

Cw=input weight ftaction of solids 

= <Os P slf (Om Pm) 

Cw1=weight solid fraction in suspension 

= (Os1Psl/(Om Pm) 

Cw2=weight solid fraction in saltation 

= ( Os 2 P s ) I ( Om P m) 

( 3. 2) 

From the input weight fraction of solids the input 

volume fraction of solids can be obtained as: 

where: 

Cv=input volume fraction of solids 

=Os/Om= Vss/Vm ( 3 • 3) 
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where Q = volume flow rate 

Vm = average velocity of the mixture 

Vss = superficial velocity of solids 

and subscripts: 

S,L,M = for Solid, Liquid and Mixture respectively 

1,2 = for Suspension & saltation respectively 

Gaessler's experimental analysis on water-solid flow 

mixtures through horizontal pipes lead to the development of 

a pressure drop relation. In the process of developing this 

relationship, he derived a correlation, as shown in Eq 3.4, 

to determine cw 2 in terms of Cv and an estimated initial 

value of Cwl. 

::

2 

= o~~~sl i co@:) zl 
( 3. 4) 

where 

zl = ~~J~ (P:: P) F3~~ z2 ( 3. 5) 

( 3. 6) 

Csl = the volume fraction of solids in full suspension 

Fro = v0 £Jgo = Froude number based on the settling 
velocity, V0 , of the average 
particle size 

Frm = Vm/~= Froude number based on the mixture 
velocity, Vm 

Os= the volume fraction occupied by the solids if 
packed in a tube; for coal$ s= 0.60-0.65 
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After cw 2 is initially determined the values may be 

check by Eq 3.2. If Eq 3.2 is not upheld a new value for Cwl 

will be entered until the fundamental of mass conservation 

principle as expressed in Eq. 3.2 is satisfied. 

With Cwl determined, the flow pattern of the slurry may 

be predicted by using Gaessler's flow pattern criteria. The 

velocity of the solids must now be determined for the 

evaluation of the in-situ solids concentration. 

The velocity ratio of the saltating solids to the total 

solids is determined using: 

where 

v 2 s 
-= 
v 

s 

3 -z 

z} = ( :s )]% PS :\t c:~) 24 

z4 = 2 (F re) 1/3 -(1/ ~s) 

( 3. 7) 

( 3 • 8) 

Gaessler then correlated Eqs 3.4 and 3.7 to obtain a 

factor of proportionality; 

(3.9a) 

or 

( 3. 9b) 
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factor of proportionality, which is 
dependant upon the fraction of altating 
solids and their velocity, and the 
coefficient of sliding friction. 

coefficient of sliding friction, which was 
found to be essentially constant for any 
solid material, liquid and pipe-wall 
combination. 0.25-0.28 for coal 

Based upon his experimental data, Gaessler prepared 

nomographs, as shown in Figures 3.2 and 3.3, to simplify the 

iterative solution of Eqs 3.4, 3.9a and 3.9b. These 

nomographs are based upon ¢s=0.65 and C0 =0.44. If c0 deviates 

from 0.44 the obtained value may be multiplied by/c0/0.44 for 

an approximation of cw2fcw and '.s I " µ *• 

Using the above correlations the ratio of the solids to 

mixture velocity can be determined by Equation 3.10 using. 

an interactive process. 

PS 
[f * (--_-p-) 

s PS L 
- f 

L 

v - v c 
( s m v {s + ----) 

v 
c--E.) 2 
v v 

s rn 

(l - C )
2 

s 
( (V /V ) - C ) J } 

s rn s 

(3.10) 

where: 

. -- . ----------

= material constant that accounts for the 
'properties oi the solid particles and the 
pipe surface. 
For coal: (3.to Smm) in hardened steel fs 0 =0.0046 

and in non-hardened steel fs 0 =u.0038 
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The Velocity for solid, vs can be obtained by multiplying the 

resultant value for (Vs/Vml from Eq. 3.10 by the mean mixture 

flow velocity, Vm/as: 

( 3 .11) 

The superficial velocity of solids is given as: 

(3 .12) 

and the mean velocity of solids in the saltating bed is: 

in which, the value of (Vsz/Vsl is obtained from Eq.3.7. 

Equation of continuity, when applied, gives: 

(3 .14) 

The in-situ transport concentration, CVT, can be evaluated 

to be: 

(3.15) 

Gaessler demonstrated the sensitivity of this ratio as a 

function of Frm and Fro in Figure 3.4. This ratio is rela­

tively insensitive to the change of Cv and P L/(P s-P LI 

(Govier,1972). These computations will allow the 

determination of the average velocity of solids, Vs, in the 

slurry transport system. The in-situ solid concentration can 

be obtained, by applying. Eq. 3.15 with the input solid 

concentration, Cv given. 
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3 • 4 M.Q.d.if..i~g_ ll.il.~~~l.~L \:Q.LL~l.at..iQ.ll f.Q.L S.l.!J.LL.i~~ li.it.h 

Distributed Particles s..iz..e. 

Gaessler's analysis was confirmed indirectly by experi­

mental results of pressure loss data collected from small 

and medium size pipe lines (46 to 160 mm diameter) using 

narrowly distributed coal particle sizes. To expand the 

application of these correlation to larger pipelines and 

transporting slurries composed of solids with broad particle 

size ranges, a particle size distribution subdivision 

technique is needed. The development of this technique is 

briefly outlined in this section. 

Three basic assumptions were made in the development of 

this techni~ue. These assumptions are: 

1. The fraction of particles having size di behaves 

the same way in a mixture of water and solids of 

distributed sizes as in a mixture of near uniform 

sizes. 

2. Suspended solids of size, di, contributes its 

effect on Cwz computation only to those particles 

having size greater than di, in the manner of 

increasing the mass density of the carrying fluid. 

3. The size distribution of coal after crushing and 

grinding is to follow the Rosin-Ramler function 

expressed mathematically as: 

(3.19) 
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where 

R = cumulative oversize particles in percent by 
weight 

di= specific particle size 

d = characteristic particle size 

NS= coal character index, representing the slope of 
the size distribution function. 

The particle size distribution particle size is 

subdivided into n sub-sections with each section having an 

average particle size, di, For each di a particle settling 

velocity is obtained from Eq 2.7a, 2.7b or 2.7c . A 

corresponding drag coefficient, c 0 was determined using one 

of the equations Eqs 2.6a through 2.6g. These values were 

then used to determine cw 2 and Vs, This process is 

initiated with the smallest di and continued until the 

entire range of the particles is accounted for. 

The effect of the suspended solids accumulated from 

particles smaller in size than that of the particle under 

consideration is accounted for in the determination of the 

bulk fluid density, T(il. The percentage of suspended 

solids for each sub-section having particle size smaller 

than di, is added to the percentage of assumed suspended 

solids in the sub-section of particle size di. This 

increases the density of the carrying fluid and help to 

enhance its power to suspend more solids. Equation 3.20 

represents the mathematical expression of this relationship. 

(3.20) 
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where Cslt is the accummulated fraction of solids in 

suspension and; 

j=i-1 

E Csl(j) * P(j) 

j=l 

~ P(j) = percent fraction of jth sub-section 

(3 .21) 

The process of determining the magnitude of other solid 

fractions; such as cs 2 (i), Cvi(i) and cv 2 (i) of size di and 

corresponding velocities is as previously described (Sec. 

3.3). Each of the solid concentrations and velocities are 

weighted by their respective percentages in the computation 

process. Mathematically they are: 

Vslt = Vs1<Cv1/<Cv1+Cv2>> 6 P(i) 

vs2t = Vs2(Cv2/(Cv1+Cv2l) 6 P(i) 

(3 .22) 

( 3. 23) 

where, VslT and v82T is the mean velocity of solids in 

suspension and in bed motion respectively. 

The summation of the resulting concentrations, CvlT 

and Cv2T, ~ives the in-situ transport concentration of 

solids in the pipe. By summing up the weighted solids -

component velocities as given in Eqs. 3.22 and 3.23, the 

average velocity of the solids are obtained. 

Cv =" cvlt + ECv2t 

Vs = EVs(i)* ~ P(i) 

(3.24) 

(3 .25) 
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The equations presented in the previous section for 

computing the supperficial velocity of solids, Vss; mean 

velocity of solids in the saltating bed, vs 2 i and the in­

situ transport concentration, Cvt (Eqs. 3.12 through 3.15) 

are all applicable. The throughput of coal and its water 

requirement for transportation is then derived to give: 

This leads to: 

TSC = Os (3600*24*3650P) '( s 
2200 

WRT = QL (3600*24*3650P) '( L 
2200 

where 

(3 .26) 

(3.27) 

(3.28) 

(3.29) 

(3 .30) 

TSC = Total coal transported in metric tons per year; 
and 

OP =Operation· Factor, less than or equal to 
unity. 

3.5 Determination Q:f. Local~ concentratiofy Distribution 

The in-situ solids concentration, CvT obtained above 

represent the volume fraction occupied by solids in a given 

section of pipe. The value of CvT is greater than the 

delivered solid concentration Cv as a result of hold-up in 

the system. The difference between·cVT and Cv become more 

obvious as the solid particle size and/or mass density 

increases. 
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The coal concentration distribution profile can be 

determined using an equation derived based on the theory of 

turbulent dispersion. Intergration of the in-situ 

concentration the lower portion of the pipe gives the 

critical value of the local coal concentration, CL. This 

value is then compared with the maximum packing factor, 

0
5

, and used to prescribe the maximum permissible input (or 

detivered) solid concentration. 

' The gravitational effect will cause the solids to 

distribute unevenly over the pipe cross-section with more 

particle moving along the bottom portion of the pipe. The 

degree of heterogeniety increases by increasing particle 

size and/or the specific gravity of the solids. To 

determine the critical condition for plugging of the 

pipeline, it is essential that the phenonenon of 

heterogeneous solids distribution be considered and that the 

bottom portion of the pipe be taken as the control section. 

This process is initiated by determining a reference 

concentration at 1/3 of the coal particle diameter from the 

pipe's bottom. The solid concentration Ca, at this 

reference point can be expressed as (Utterback, 1977): 

where 

Ca= reference concentration; 

Ap = area of pipe; L2; 

(3 .33) 
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r = radius of pipe, L; 

a = lf3 mean particle ·diameter, L; 

B = coefficient of proportionality = 0.92; 

K = Karman's constant, for water = 0. 4; and 

V' = mean particle settling velocity adjusted for 0 

heavy medium, LT-1 

= Vo ( P sf Pt -l)f( p sf PL)-1) 

From the reference point the concentration at any depth, y, 

can thus be determined to give: 

z 
= Ca(D-Y a ) 

y D-a 
(3.34) 

where Cy is the concentration at y distance from the bottom 

of the pipe. Intergrating Cy from a to f2 the concentration 

for the lower portion of the pipe is evaluated as: 

2r2 JTI/2 
CL= A /z C 

P a Y 
(3.35) 

If CL greater than CVF* es, where CVF is the concentration 

factor, a smaller input concentration value must be used for 

the system so that the danger of plugging can be avoided. 

The originally calculated mixture velocity for a 50 

percent solid concentration by weight, is maintained during 

this process. This is done to help maintain a higher solid 

velocity which in turn reduces CL. 

This computation procedure is continued until CL reaches 
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a value that is smaller than CVE'*Os· The input solid 

concentration corresponding to the final CL value is the one 

used in the water requirement computation. 

3.6 water Required~ start-up 

Prior to the transport of a coal slurry mixture the 

pipeline must be primed. The water required for priming is 

directly related to the pipe diameter given by (assuming 98% 

operation time): 

where: 

D =)MMT*l0 6 )/(11033*Cv*Vm* ) 'IL 
(3.36) 

MMT=Million metric tons of coal contracted, MLT- 2 

Each of these variables, except the mean velocity, Vm can be 

determined by the quantity and ty_Pe of coal to be 

transported and the calculated coal-to-water ratio. Thus 

the water required for startup, priming, is given by: 

SWR = (l/4)*3.14*D2*L (3 .37) 

where: 

SWR is the Start-up water required,in L3T-l; and 

Lis the Pipe length. 
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3.7 Storage Reservoir Requirements 

To maintain a constant flow, slurry pumping stations 

will be required at a maximum of 100 miles apart depending 

upon the system characteristics. These stations will have 

water storage facilities to insure accessible water for 

start-up and flushing. The quantity of water stored should 

be greater or equal to that needed for start-up operation 

water with adjustments made for evaporation and seepage 

losses. 

Evaporation losses per each square foot can be 

determined by an empirical equation developed by Meyer 

(Viessman,1972). This equation is expressed as: 

where 

E=[C(e 0 -ea) (l+W/10) ]365(1/12) (3.38) 

E = 

c = 

eo = 

ea = 

annual evaporation in foot depth/yr, LT-1; 

empirical constant, 0.36 for ordinary lakes; 

saturation vapor pressure at the water surface 
temperature.(Hg) Table 3.2 

vapor pressure of air, (Hg), must be multiplied 
by the relative humidity Table 3.2 

W = wind velocity in mph at 25 ft above the water 

surface, L3T-1 

Multiplying the evaporation loss by the reservoir surface 

area the annual volume of water lost due to evaporation can 

be determined. 
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Table 3.2 Water Vapor Pressure at Various 
Temperatures {Viessman,1972) 

TEMP ~ .LllL.. tlgl. 

32 0.18 
40 0.25 
so 0.36 
60 0.52 
70 0.74 
80 1.03 
90 1.42 

100 1.94 

The seepage of the storage area is estimated using 

bacry's Law {A Water Resources Technical Publication, 

A.W.R.T.P.,1977) 

where: 

with 

Q=KiA{3.2181*10-2ft/cm ) (3.15*10 7sec/yr) 

t = coefficient of permeability for the 
· foundation (table 3.3, Harr ,1962) 

(3 .39) 

A= gross area of fo~ndation through which flow 
takes place, L 

Q = discharge per unit of time, L3T-l; 

i = hydralic gradient ; L/Ls 

h = difference in head, (difference in head 
would be depth of water), L and; 

Ls = length of seepage path, L; 

If the seepage rate is high, control measures such as; an 

impermeable lining may be used to inhibit the rate of 

seepage. 
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Table 3.3 Typical Values of Coefficient of Permeability 
(Harr,1962) 

Soil Type 

Clean Gravel 
Clean Sand (coarse) 
Sand (mixture) 
Fine Sand 
Silty Sand 
Silt 
Clay 

Coefficient of Permeability 
cm/sec 

1.0 and greater 
1.0 
0.01 
o.os 
0.002 
0.0005 

0.000001 

- 0.01 
- 0.005 
- 0.001 
- 0.0001 
- 0.00001 
and smaller 

The annual water commitment for each pumping station i~· 

WPS= Fe SWR(11W.. + AeE +Q(ASQ) 
L 

(3 .40) 

where 

WPS= Water/pumping station, L4; 

Fe= Factor estimating storage water utilization: 

depending upon the frequency of pipelin~ start-

up/shut down, FC can be greater or less than 

unity. 

Ae = Water surface area, L2; 

AS = Area subject to seepage, L2; and 

L = Pipe length between pumping stations, L 

Therefore the total water required for coal slurry system is· 

the summation of the water needed for coal delivery and that 

utilized at the pumping stations This is expressed as: 

WR= WRT + N*(WPS) ( 3. 41) 

where 

N = Number of pumping stations 



CHAPTER 4 

RESULTS AND APPLICATIONS 

The methodology developed in this study can be used for 

determining the maximum permissible solid concentration for 

coal slurry pipelines and for estimating the slurry 

transport system water requirements. Although the former 

represents an important design component by itself for 

slurry pipelines carrying coarse coal-water mixtures, it is 

also an essential step in order to make an accurate 

estimation of the actual amount of water required to deliver 

a given amoung of coal. 

The maximum permissible solid concentration that can be 

transported through a coal slurry pipeline is determined by 

taking into account the slip velocity between solids, liquid 

hold-up phenomena and the heterogeneous solid distribution 

in the pipe. 

Because of the large number of computations involved it 

is necessary to utilize a computer. A computer program 

written in Basic language for a microcomputer with c/pm 

operating system has been prepared and is listed as shown in 

Appendix B. 

To illustrate the proposed method and test the computer 

program a specific type of coal is selected for use in the 

assumed slurry transport system and is presented in Section 

4.1. Some of the coal properties and the system parameters 
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used in this analysis are similar to that of the Black Mesa 

coal slurry pipeline system. For a full range sample 

analysis the following parameters were used: 

Rosin-Ramler size dist. index= 0.9 (Ref. Fig. 1.5) 

Max. allowable cone. = 0.9* s = 0.585 

Pipe roughness= 0.064 mm (0.00015 ft) 

Top coal particle size= 1.19 to 50.8 mm 

Water Temp. = 70 degree F 

Spec. Grav. coal= 1.35 

A sample computation was also prepared and presented in 

section 4.2 to demonstrate the total coal slurry system 

water requirement estimation method. 

4.1 Results Pres€ntation 

The computation results are presented in Tables 4.1 

through 4.6 in the order of increasing top or largest coal 

particle size. The different top sizes used are: 

l.19mm (1/16") 

3.125mm (1/8") 

9.525mm (3/8") 

12.7mm (1/2") 

25.4mm (1") 

50.8mm (2") 

The top coal particle size used in Table 4.1 is l.19mm which 

is the same as that used in Black Mesa pipeline. Five 

different computations were perfdrmed for this top coal 

particle size and each of the other particle sizes. This is 
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done by varying the pipe diameter from D = lft. to 3ft. by 

0.5 ft. increments. 

Notations used for the computer output is defined as 

follows: 

Nomenclature for Computer Output 

CL - Solid concentration in lower half of pipe by volume 

CVT - In-situ solid concentration by volume 

CW - Delivered solid concentration by weight 

D - Pipe diameter, ft. 

DT - Top size of coal particle, MM 

TC - Tonnage of coal delivered, Metric Tons 

TW - Tonnage of water delivered, Metric Tons 

TW/TC - Water-coal ratio 

VL - Velocity of liquid, ft. Sec-1 

VM - Velocity of mixture, ft. Sec-1 

vs - Velocity of solids, ft. Sec-1 

VP - Terminal Settling velocity of solid, ft. Sec-1 

As shown in Table 4.1 that, although the slip velocity 

does exist between the two phases, it did not produce 

significant hold-up in the pipe. This is because both the 

difference between the solid Velocity VJ and liquid 

velocity, VL and the degree of local concentration 

heterogeneity are small. As a result, the water and coal 

can remain at a one to one ratio even for the largest pipe 

diameter used in the computation. 

For coarser coal particles, however, both the magnitude 

of the slip velocity and the degree of solid distribution 
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TABLE 4.1 Computation Results for 1.19 mm x O Coal 

****************************************************** 
WATER REQUIREMENTS FOR COAL SLURRY TR.Ai~SPORT 

****************************************************** 

DT,D,CVT,CL= 1.19 1 .4 26406 .534902 
VP,Vel,VS,VL= .0204096 5.75788 5.74608 5.76665 
CW,TC,TW,TW/TC= .5 2. 27748E+o6 2.27748E+o6 1 

DT,D,CVT,CL= 1.19 1.5 .426206 .517216 
VP,VM,VS,VL= .0199762 6.92193 6.91098 6.93007 
CW,TC,TW,TW/TC= .5 6 .16029E+o6 6.16029E+o6 1 

DT,D,CVT,CL= 1.19 2 .4 26091 .506237 
VP,VM,VS,VL= ,019717 7 .89254 7.88218 7.90023 
CW,TC,TW,TW/TC= .5 l.24873E+o7 1. 2487 3E+o7 1 

DT,D,CVT,CL= 1.19 2.5 .426017 .498551 
VP,VM,VS,VL= .0195464 8.74104 8.73109 8.74842 
CW, TC, TW, TW/TC= .5 2, 1609E+o7 2.1609E+o7 1 

DT,D,CVT,CL= 1,19 3 .425964 .492744 
VP,VM,VS,VL= .o 194196 9.50357 9.49394 9.51072 
CW,TC,TW,TW/TC= .5 3. 38315E+o7 3, 38315E+o7 l 

--------------------~~--~-------------------

WATER TEMP. • 70 
SPEC. FRA. COAL = 1.35 
SIZE DEST. INDEX = .9 
MAX. PERM. CONC. = ,585 
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Table 4.2 Computation Results for 3.125 mm x O Coal 

****************************************************** 
WATER REQUIREMENTS FOR COAL SLURRY TRANSPORT 

****************************************************** 

DT,D,CVT,CL= 3.125 l .398403 .564024 
VP,VM,VS,VL= .04 50964 7 .10092 7.06624 7 .12389 
CW,TC,TW,TW/TC= .4 7 2.6168E-+-06 2.95086E-+-06 1.12766 

DT,D,CVT,CL= 3.-12s 1.5 .407617 .576767 
VP,VM,VS,VL= .0479221 8 .s 327 8.50077 8.55467 
CW,TC,TW,TW/TC= .48 7 .2469E+o6 7 .85081E-+-06 1.08333 

DT,D,CVT,CL= 3.125 2 .417041 .594919 
VP,VM,VS,VL= • 0556613 9.72622 . 9. 69687 9.71;721 
CW,TC,TW,TW/TC= .49 1. 50 359E-+-O 7 l .56496E-+-Oi' 1.04082 

DT,D,CVT,CL= 3.125 2.5 .416861 .577502 
VP,VM,VS,VL= .0542398 10.7694 10.7415 10.7893 
CW,TC,TW,TW/TC= .49 2.60134E-+07 2. 70752E+o7 1.04082 

DT,D,CVT,CL= 3.125 3 .416737 .5644 26 
VP,VM,VS,VL• .053196 11.7067 11.6799 11.7259 
CW,TC,TW,TW/TC= .49 4.07196E-+07 4. 23817E-+-07 1.04082 

WATER TEMP. • 70 
SPEC. FRA. COAL = 1.35 
SIZE DEST. INDEX= .9 
MAX. PERM. CONG. = .585 
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Table 4.3 Computation Results for 9.525 mm x O Coal 

****************************************************** 
WATER REQUIREMENTS FOR COAL SLURRY TRANSPORT 

****************************************************** 

DT,D,CVT,CL= 9 .525 l .353181 .590705 
VP,VM,VS,VL= .0920117 8.3685 8 .27245 8.42095 
CW,TC,TW,TW/TC= .42 2.71576E-t{J6 3.75033E+06 1. 38095 

DT ,D,CVT ,CL= 9.525 1.5 • 3710 5 .59168 
VP,VM,VS,VL= .08696 77 lQ.0472 9.96169 10 .0976 
CW,TC,TW,TW/TC= .44 7 .73049E-t{J6 9.83881E-t{J6 1.27273 

DT,D,CVT ,CL= 9.525 2 .380018 .580809 
VP,VM,VS,VL= .084 692 11.4457 11.3656 11.4948 
CW,TC,TW,TW/TC= .45 l.60589E-t{J7 l.96275E-t{J7 1.22222 

DT,D,CVT,CL= 9.525 2.5 .389201 .58637 
VP,VM,VS,VL= .0885381 12.6675 12.592 12.7157 
CW,TC,TW,TW/TC= .46 2. 84 71 JE-t{J 7 3.34228E-t{J7 1.17391 

DT,D,CVT,CL= 9.525 3 .388919 .56237 
VP,VM,VS,VL= .0827 345 13.7651 13.6929 13.811 
CW,TC,TW,TW/TC= .46 4 ,45509E-t-07 5. 22988E-t{J7 1.17391 

-----------------------------------------------

WATER TEMP. • 70 
SPEC. FRA. COAL • 1.35 
SIZE DEST. INDEX= .9 
MAX. PERM. CONG.• .585 
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Table 4.4 Computation Results for 12.7 mm x O Coal 

****************************************************** 
WATER REQUIREMENTS FOR COAL SLURRY TRANSPORT 

****************************************************** 

DT,D,CVT,CL= 12.7 l .335149 .570106 
VP, Vl1, VS, VL= .0976557 8.53507 8.41867 8.59374 
CW,TC,TW,TW/TC= .4 2.62265E-+-06 3. 9 3398E-+-O 6 1.5 

DT,D,CVT,CL= 12.7 1.5 .362133 .580571 
VP, Vt1, VS, VL= .094534 10.2446 10.1414 10. 3033 
CW,TC,TW,TW/TC= .4 3 7 .68081E-+-06 1.01815E-+-07 1.32558 

DT,D,CVT,CL= 12.7 2 • 370962 .575215 
VP,VM,VS,VL= .0890457 ll. 6687 11.5721 ll. 7 256 
CW,TC,TW,TW/TC= .44 1.5961 lE-+-07 2.03141E-Kl7 1.27273 

DT,D,CVT,CL= 12.7 2.5 .380038 .575567 
VP,VM,VS,VL= .0902089 12.9127 12.8216 12.9685 
CW,TC,TW,TW/TC= .4 5 2.8308E-+-07 3.45987E-+-07 1.22222 

DT,D,CVT,CL= 12.7 3 .389288 .58746 
VP,VM,VS,VL= .096329 14 .03 13.9432 14 .0853 
CW,TC,TW,TW/TC= .4 6 4 .54083E-+-07 5. 33054E-+-07 1.17391 

WATER TEMP. = 70 
SPEC. FRA. COAL = 1.35 
SIZE DEST. INDEX = .9 
MAX. PERM. CONG.= .585 
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Table 4.5 Computation Results for 25.4 mm x O Coal 

****************************************************** 
WATER REQUIREMENTS FOR COAL SLURRY TRANSPORT 

****************************************************** 

DT,D,CVT,CL= 25.4 1 • 300622 
VP,VM,VS,VL= .173691 9.0901 8.89344 
CW,TC,TW,TW/TC= • 36 2.48513E+o6 4 .41801E+o6 

DT,D,CVT,CL= 25.4 1.5 .326701 
VP,VM,VS,VL= .151226 10.8975 10.7201 
CW,TC,TW,TW/TC= .39 7. 324 7 3E+o6 l.14566E+o7 

DT,D,CVT,CL= 25.4 2 • 335044 
VP,VM,VS,VL= .131951 12.4017 12. 2364 
CW,TC,TW,TW/TC= .4 1.524 31E+o7 2. 2864 7E+o 7 

DT,D,CVT,CL= 25.4 2.5 .35305 
VP,VM,VS,VL= .133579 13.7149 13.5625 
CW,TC,TW,TW/TC= .4 2 2. 7817 3E+o7 3.84144E+o7 

DT,D,CVT,CL= 25.4 3 .362104 
VP,VM,VS,VL= .131875 14 .8938 14. 7449 
CW,TC,TW,TW/TC= .43 4 .46659E+o7 5 .92083E+o7 

----------------------------------~----------

WATER TEMP. • 70 
SPEC. FRA. COAL = 1.35 
SIZE DEST. INDEX = .9 
MAX. PER.~. CONG.• .585 

.574581 
9.17463 
1.77778 

.589915 
10.9835 
1. 5641 

.571293 
12.481:9 
1.5 

.587885 
13. 798 
1.38095 

.586844 
14.9784 
1.32558 



71 

Table 4.6 Computation Results for 50.B mm x O Coal 

****************************************************** 
WATER REQUIREMENTS FOR COAL SLURRY TRANSPORT 

****************************************************** 

DT,D,CVT,CL= 50.8 
VP,VM,VS,VL= .32109 
CW,TC,TW,TW/TC= .35 

DT,D,CVT,CL= 50.8 
VP,VM,VS,VL= .269071 
CW ,TC, TW, TW/TC= .-36 

DT,D,CVT,CL= 50.8 
VP,VM,VS,VL= .235396 
CW,TC,TW,TW/TC= .37 

DT,D,CVT,CL= 
VP,VM,VS,VL= 
CW,TC,TW,TW/TC= 

50.8 
.213322 
• 38 

DT,D,CVT,CL= 50.8 
VP,VM,VS,VLz .19987 
CW,TC,TW,TW/TC= .39 

1 
9.58311 
2.53988E+o6 

1. 5 
11.4 72 
7 .05672E+o6 

2 
13.04 25 
1.4 7009E+o 7 

2.5 
14 .4126 
2. 6144 2E+o 7 

3 
15.64 2 
4 .2055E+o7 

.295319 
9.25257 
4. 71691E+o6 

.302094 
11.1691 
l.25453E+o7 

• 309886 
12.7592 
2. 50 3 l 3E+o 7 

.318128 
14 .14 6 
4 .26563E+o7 

.326763 
15.3845 
6.57784E+o7 

----------~----------------------------------

WATER TEMP. -= 70 
SPEC. FRA. COAL = 1.35 
SIZE DEST. INDEX = .9 
MAX. PERM. CONG.• .585 

.589285 
9.72163 
1.85714 

.594951 
11.6031 
1.77778 

.594 639 
13.1697 
1.7027 

.59294 9 
14 .537 
1.63158 

.589337 
15.7669 
1. 5641 



72 

heterogeneity increases. This causes the lower half of the 

pipe to approach critical condition at high solid 

concentrations. When this happens, the computer is 

programmed to. reduce the input (or delivered) solid 

concentration by one percent and repeat the analysis again 

until the danger of plugging in the lower portion of the 

pipe diminishes. This process was carried out with the mean 

flow velocity, Vm, being kept at the same level as initially 

determined for Cw = 0.5. 

The results of these repeated analyses are shown in 

Tables 4.2 through 4.7 in which the final permissible solid 

concentration, Cw, is printed. The values of this 

concentration are somewhat smaller than the initial value of 

0.5. As a result, more water is required to deliver a given 

amount of coal in this case than what is required for a 

system capabl• of transporting a coal slurry at a 50/50 coal 

to water ratio. 

With the mean slurry flow velocity selected to equal a 

value twenty percent higher than the cirtical velocity, VM = 

1.2 Ve, a relationship between the pipe diameter, coal 

particle size and the throughput of coal exists. This is 

because the critical velocity, Ve, is computed as a function 

of pipe diameter, solid concentration and particle size as 

shown in Eqs. 2.8a through 2.8e. A plot of this 

relationship is shown in Fig. 4.1. 

The water to coal ratio is plotted in Fig. 4.2 for 

diffe~ent coal particle sizes. Based on this water/coal 

ratio, the annual water requirement for coal delivery can be 
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computed and is again plotted in terms of pipe diameter as 

depicted in Fig. 4.3. 

In actual application and for preliminary estimation of 

the slurry transport water requirement, one may use Fig. 4.1 

to select a pipe diameter based on the designed coal 

throughput and desired particle size. Using the selected 

pipe diameter, in connection with Figs, 4.2 and 4.3, the 

corresponding water-to-coal ratio and estimated transport 

water requirement can be determined. 

It should be noted, however, that these plots are 

constructed for a specific type of coal that has a Rosin-

Ramler size distributio index n = 0.9. For coal having a 

substantially different basic property, the given plots may 

yield erroneous results. In such instances, a separate 

computer analysis is needed. 

4.2 Example Problem f.Qt.. Slurry water Determination 

If a coal slurry transportation system is to deliver 

8.0 million tons of coal with a top size of 12.7mm, distri-

bution index 0.9 and sphericity of 0.7 a distance of 1000 

miles, the specific parameters for the slurry system are: 

i= 1.35 L = 1000 miles K = .00005 cm/sec 

lj, = 0.7 foundation depth = 70ft w = 15 mph 

NS = 0.9 water temp. = 50°F Ls= 165 ft 

dt = 12.7mm air temp. = 60°F humidity = 40 % 

From Figures 4.1, 4.2 and 4.3 or by direct computation the 

water-to-coal ratio is obtained to determine the transport 

water based on the tonnage of coal and particle top size. 
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TW/TC = 1.39 

D = 1.65 ft (use 20" pipe) 

WRT = 11*106 tons/yr* 8.087*10-4 acre-ft/ton 

WRT = 8,895.7 acre-ft/yr 

The water requirement for the assumed 50/50 water-to-coal 

ratio system is 5,886 acre-fr/yr. This value differs from 

the computed total slurry system water requirement by 3,010 

acre-ft/vr. For a pipe diameter of l.65ft the startup 

water is determined from Equation 3.38 to be 1.128*107 ft 3 

or 259 acre-ft for the entire coal slurry transport system. 

Dividing the SWR by the total pipe length, L, and 

multiplying by the pipe length between pumping stations, DL, 

the water/start-up for each station is obtained. 

SWR/station/startup = 1.128*107 DL/L 

For L = 1,000 miles and DL = 100 miles: 

SWR/station/startup = 25.91 acre-ft/each start up 

The evaporation loss due to additional storage can now 

be estimated from Eq 3.39 

of 35ft. 

and Table 3.2 for a water depth 

E = (0.36*(.25-(.52) (,40)) (1+15/10))365(1/12) 

= 1.149 ft/yr 

Assuming a water depth of 35' in the reservior, the water 

surface area may be computed. The total evaporation of the 

impounded.water is: 
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E = 1.149 * l.1~8*10 6/35 = 3.70*105ft3/yr 

E = 8.501 acre-ft/yr 

The estimated seepage loss for an unlined water pond is 

evaluated from Eq 50, for an assumed depth of 35ft 

containing the necessary start-up water as: 

K = 51.73 ft/yr 

A= 70ft * 1 ft 

Q = 51.73ft/yr * 70ft2 * 35ft/165ft 

Q = 76.81 ft3/yr * 179.5 (berm width) 

Q = 0.3165 acre-ft/yr 

The total water for a coal slurry system from Eqs 

3.41 and 3.42 is : 

Transport water= 8895.7 acre-ft/yr 

Startup water= 25.91 acre~ft/yr 

Evaportation = 8.501 acre-ft/yr 

Seepage= 0.3165 acre-ft/yr 

Number of pumping stations= 10 

WR= 8895.7 + 10(25.91 + 0.8501 + 0.3165) 

WR= 9166.47 acre-ft/yr 

If evaportation and seepage water requirements were not 

included the total water requirement would then be 9,154.8 

acre-ft/yr. 



CHAPTER 5 

CONCLUSION 

For industrial applications of long distance coal 

slurry pipelines, fine coal-water mixtures at a 50 percent 

concentration by weight is presently considered. However, 

in many instances, when factors involving economics and 

overall system energy efficiency are taken into account, use 

of coarse coal could be more advantageous than pulverized 

fine coal particles. This is true especially for short and 

medium distance pipelines. If a coarse coal slurry pipeline 

is adopted, a 50 percent by weight concentration may not 

always be attainable. 

In a coarse coal slurry transport system, the 

phenomenon of the velocity differential between the 

suspended and suspending phases becomes more apparent and 

causes a significant increase in the in-situ transport solid 

concentration in the pipe. This concentration, instead of 

input or delivered concentration should be used in the 

pipeline limiting concentraton determination process if 

pipeline blockage is to be avoided. Based on this 

criterion, the maximum permissible delivered concentration, 

often less than 50 percent weight concentration, can be 

estimated. As a result, more water will be required through 

such a pipeline to deliver the same amount of coal. 

In the present study, an attempt was made to develop a 

more comprehensive methodology for estimating the amount of 

required water to be used in the coal slurry transport 

--------------------·-----
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pipeline design process. The computed results provide the 

total water requirement information for the entire system 

including water for start-up, flushing, evaporation and 

seepage losses. The total water requirement for a coal 

slurry pipeline should serve state and local water resources 

allocation and policy determination needs. 

The use of the modified Gaessler correlation appear to 

provide reasonable results for the hold-up velocity and in­

situ transport concentration. By intergrating along the 

solid concentration distribution curve over the lower half 

of the pipe cross section, the average in-situ concentraton 

for this portion of the pipe can be evaluated. A criterion 

was recommended in which a maximum possible concentration by 

volume in the lower half of the pipe is not to exceed a 

value equal to "0.9 x 0.65". The latter quantity represents 

the maximum attainable volume fraction under random packing 

conditions. 

Although this criterion is considered a rather 

stringent one the computational results appear to be in 

close agreement with the experience values. The assumed 

factor of 0.9 still needs to be verified. Further study 

along this line is recommended. 



APPENDIX A 

NOMENCLATURE 

A Storage foundation area, L2 

AP - Area of pipe, L2 

AP - Surface area of particle, L2 

AS - Water surface area, L2 

As - Surface area of a spherical particle, L2 

a - 1/3 mean particle diameter, L 

B - Coefficient of proportionality 

C Empirical constant 

Ca - Reference solid concentration in pipe 

c0 - Coefficient of drag 

CL - Solid concentration in lower half of pipe 

Cv, Cw - Volume and weight fraction of solids input, res, 

Cv2 - Volume and weight fraction of solids 
suspension and saltation respectively. 

Cwl' cw2 

CVF - Concentration volume factor 

CVT - Actual Transport Concentration 

in 

Cv2t - Total volume of solid concentration 
suspension and saltation respectively 

Cy - Solid concentration at y distance from pipe's bottom 

D Pipe diameter, L 

d Particle diameter, L 

d Characteristic particle size, L 

E - Annual Evaporation, LT-1 
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e -a V f . FL-2 apor pressure o air, 

Saturation vapor pressure, FL-2 

Fo - Force of Drag, MLT-2 = F 

Fg - Force of gravity, MLT- 2 

Frm - Froude Number, Vm/ gD 

Fro - Froude Number, V0 / gD 

fL - Fanning friction factor 

f 0 s - Material Constant 

f - Water supply factor 

g - Gravity, LT-2 

H - Hold-up ratio 

h - Head of water, L 

i - Hydraulic gradient 

K - Karman:s constant 

L - Pipe length, L 

= F 

L - Pipe length between stations, L 

Ls - Length of seepage path, L 

MMT - Metric million tons, MLT-2/T 

MTY - Contracted million tons/yr, MLT-2/T 

N - Number pumping stations 

NS - Coal character index 

OMC - Original moisture content 

OP - Operation factor 

P - Percent concentration 

Pa - Area of particle projected on a plane, L2 

P - Percent change in solid concentration 

Q - Volume flow rate, L3T-l 

R - Cumulative oversize particles retained 



Re - Reynolds Number 

r - Radius pipe, L 

S - Specific gravity 
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SWR - Start-up water required, L4T-l 

TC - Tonnage, of coal, MLT-2 

TW - Tonnage of water, MLT-2 

TSC - Total solid concentration 

V - Velocity, LT-1 

Ve - Critical velocity, LT-1 

V0 - Particle settling velocity, LT-1 

v•
0 

- Adjusted particle settling velocity for heavy medium, LT-1 

Vs - Actual velocity of solids, LT-1 

Vslt' vs 2t - Total velo_city of suspended and saltating 

solids, LT-1 

Vss - Superficial velocity of solids, LT-1 

W - Wind velocity, LT-1 

WPS - Water/pumping station, L3T-l 

WR - Total water required, L4T-l 

WRT - Water required for transport, L4T-l 

y - Distance from pipe bottom, L 

8 - Proportionality factor 

s* - Material constant 

~s - Gaessler bed packing factor 

y -- Specific Weight, ML-2T-2 

P· - Density, ML-3 

pt - Bulk fluid density of a mixture, ML-3 

" - Kinematic Viscousity, L2T-l 
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w - Particle sphericity 

subscripts 

1, 2 - Suspension and saltation respectively 

L, S, m - Solid, liquid and mixture respectively 



APPENDIX B 

COMPUTER PROGRAM 

10 DIM 
20 DIM 
30 DIM 
40 REM 
50 REM 

VP2(30),DX(30),P(30),DP(30),VP(30),CD(30),RE(30),CV1(30) 
CV2(30),CW2(30),CW1(30),VS(30),VS2(30),VS1(30),MDX(30),CVT(30) 
DT(l0),DB(l0),D(l0),CWF(l0) 

60 FOR K=l TO 6 
70 READ DT(K),DB(K) 
80 NEXT K 
90 FOR J=l TO 5 
100 READ D(J) 
110 NEXT J 
120 READ TW,NS,FV,SS,N,OP,CVF,B4,K'l 
130 REM 
140 REM***************** 
150 REM . CONSTANTS 
160 REM***************** 
170 REM 
iB.0 G=32,174 
190 EPS=,00015 
200 P!II=,65 
.210 BETA=, 28 
220 FS0=,0046 
230 REM 

'GRAVI'rY, p•r/SEC 
'PIPE ROUGHNESS, FT 
• VOLUME YRA.C·rroN SOLIDS PA.KEO IN TUBE 
• PROPORTIONALITY FA.C·roR 
'MATERIAL CONSTAN'r 

210 REM*************************** 
250 REM COMPU'l'E BA.SIC PARA.METERS 
260 REM*************************** 

OJ 
u, 



' . 

270 REM 
280 MU=EXP(-9.566-.0215*TW+5.622*10"(-5)*TW"2) 'FOR TW<l00 D-F VISCOSITY 
290 NU=EXP(-10,227-.02164*TW+5,781*10"(-5)*TW"2) 'FOR TW<l00 D-F KINEMATIC VISCOUSITY 
300 IF TW>l00 THEN MU=EXP(-9.6924-,01775*TW+3.2175*10"(-5)*TW"2) 
310 IF TW>l00 THEN NU=EXP(-10,355-,178l*TW+3.3425*10"(-5)*TW"2) 
320 ROL=MU/NU 'DENSITY OF WATER 
330 ROS= SS*ROL 'DENSITY OF LIQUID 
340 GAMA=ROL*G 'SPECIFIC WEIGHT OF WATER 
350 REM 
360 REM***************************** 
370 REM PARTICLE SIZE DIS'fRIBUTION 
380 REM***************************** 
390 REM 
400 FOR K=l TO 6 
410 DT=DT(K) 
420 DB=DB(K) 
430 REM 
440 LPRINT "******************************************************" 
450 LPRINT" WATER REQUIREMENTS FOR COAL SLURRY TRANSORT" 
460 LPRINT H******************************************************" 
461 LPRINT 
462 LPRINT 
470 REM 

'480 FOR J=l TO 5 
490 D=D(J) 
500 OPEN "I",il,"B:SSF" 'INPUT SELECTED PART, SIZE DESIG, IN FILE 
510 FOR I=l TON 
520 INPUT il,DX(I) 
530 NEXT I 
540 CLOSE lll 'CLOSE SCREEN SIZE FILE 
550 FOR I=l TON 
560 P(I)=0 
570 IF DX(I)>DT GOTO 590 
580 P(I)=l00*EXP(-(DX(I)/DB)"NS) 'PERCENT RETAINING, ROSIN-RAMMLER 
590 NEXT I 
600 DM=0 

a, 

"' 



610 P(0)=99.99 
620 DX(0) =. 001 
630 IT=l 
640 FOR I=l TON 
650 IF I>IT GOTO 730 
660 IF DX(I)>DT GOTO 690 
670 I'r=I+l 
680 GOTO 700 
690 DX(I)=DT 
700 MDX(I)=(DX(I-l)+DX(I))/2 'MEAN SECTIONAL SIZE IN MM 
710 DP(I)=(P(I-l)-P(I))/(100). 'DELTA PERCENTAGES 
720 DM=DM+DP(I)*MDX(I) 'MEAN DISTRIBUTION SIZE 
730 NEXT I 
740 FOR I=l TO (N+l) 
750 IF I=(N+l) THEN MDX(I)=DM 
760 IF I=(N+l) GOTO 780 
770 IF I>IT GOTO 840 
780 DX(I)=l000*MDX(I) 
790 IF DX(I)(=l50 THEN 
800 IF ·DX(I) <=150 GOTO 
810 IF DX(I)>3000 THEN 
820 IF DX(I)<3000 THEN 
830 DX(I)=DX(I)/1000 

·840 NEXT I 
850 FOR I=l TO (N+l) 
860 IF I=(N+l) GOTO 880 
870 IF I>IT GOTO 980 

I CHANGE TO MICRON FOR SETTLING VEL, COMP, 
VP(I)=EXP(-14.803+2,2412*LOG(DX(I)-.0445*(LOG(DX(I)))A2)) 

830 
VP(I)=EXP(-7,4543+,9489*LOG(DX(I))-,0252*(LOG(DX(I)))A2) 
VP(I)=EXP(-19,763+4.26l*LOG(DX(I))-.2478*(LOG(DX(I)))A2) 

'CHANGE BACK TO MM 

880 DX(I)=DX(I)/(25.4*12) 
890 RE(I)=VP(I)*DX(I)/NU 
900 IF RE(I)<l00000! THEN 

'CHANGE ·ro FEET FOR REYNOLDS NO. & DRAG COEFFICIENT 

CD(I)=EXP(l.93489-,262589*LOG(RE(I))+,0189006*LOG(RE(I))*LOG(RE(I))) 
910 IF RE(I)<l0000 THEN 

CD(I)=EXP(9,1019*(-1)+2,06907*LOG(RE(I))-,10498l*LOG(RE(I))*LOG(RE(I))) 
920 IF RE(I)(4000 THEN 

CD(I)=EXP(l,33574+,008799l*LOG(RE(I))-.008345*LOG(RE(I))*LOG(RE(I))) 

OJ 
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930 IF RE(I)<l000 THEN 
CD(I)=EXP(4.0758l-.81059*LOG(RE(I))+.0528908*LOG(RE(I))*LOG(RE(I))) 

940 IF RE(I)<l00 THEN 
CD(I)=EXP(6.25354-l.93306*LOG(RE(I))+.197017*LOG(RE(I))*LOG(RE(I))) 

950 IF RE(I)<l0 THEN 
CD(I)=EXP(4.25221-.8569*LOG(RE(I))+.0714634*LOG(RE(I))*LOG(RE(I))) 

960 IF RE(I)<l THEN CD(I)=24/RE(I) 
970 DX(I)=DX(Ii*25.4*12 
980 NEXT I 
990 REM 
1000 REM************************************ 
1010 REM VELOCITY OF MIXTURE DE'rERMINTATION 
1020 REM************************************ 
1030 REM 
1040 VM1=25 
1050 CW=.5 
1060 CV=(CW/ROS)/((CW/ROS)+(l-CW)/ROL) 'CONCENTRATION BY VOLUME DELIVERED 
1070 IF CW<.5 GOTO 1240 
1080 REP=VMl*D/NU 'PIPE REYNOLDS NO. 
1090 FL=.25*(1.325/((LOG(EPS/(3.7*D)+5.74/REPA.9))A2)) 'FANNING FRICITON FACTOR 
1100 VHW=(l.25*(100*CV)A(.19))*(SQR(2*G*(SS-l)*D))*((DM/(25.4*12)/D)A(l/6)) 
1110 VHD=l.35*(SQR(2*G*D*(SS-l))) 
1120 VHZ=SQR(40*G*D*(SS-l)*CV/(SQR(CD(N+l)))) 
1130 VHY=9.8*riA(.33)*VP(N+l)A.~5*(SS-.4) 
1140 VHT=SQR(2.4ll*(CVA(.2263))*(FLA(-.2334))*(CD(N+l)A(-.384))*D*G*(SS-l)) 
1150 VH=(VHW+VHD+VHZ+VHY+VHT)/5 
1160 VM=FV*VH 
1170 IF ABS(VM-VMl)>.l THEN VMl=VM ELSE GOTO 1190 
1180 GOTO 1080 
1190 REM 
1200 REM************************************ 
1210 REM MAIN PROGRAM 
1220 REM ***********************************r. 
1230 REM 
1240 FRM=VM/(SQR(G*D)) 'FROUDE NUMBER 
1250 PI'r=0 'TOTAL PERCENTAGES 
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1260 CV1T=0 
1270 CV2T=0 
1280 VSl'r=0 
1290 VS2T=0 
1300 VST=0 
1310 MCVT1=0 
1320 FOR· I=l TON 
1330 IF I>IT GOTO 1900 
1340 REM 
1350 REM 

' i 

'TOTAL CONCENTRATION IN SUSPENSION 
'TOTAL CONCENTRATION IN SALTATION 
'RESULTANT SUSPENSION VELOCITY 
'RESULTANT SALTATION VELOCITY 
'RESULTANT SOLID VELOCITY 
'HOLD-UP CONCENTRATION 

1360 REM********************************* 
1370 REM FLOW PATTERN DELINEATION 
1380 REM********************************* 
1390 REM 
1400 LET CVl(I)=.99*CV 
1410 DCVl=CVl(I) 
1420 DCV1=.5*DCV1 
1430 ROMl=(CVlT+CVl(I)*(l-PIT))*(ROS-ROL)+ROL 'BULK FLUID DENSITY 
1440 FRO=VP(I)/(SQR(G*D)) 
1450 B=FR0"(-1/3) 
1460 A=(l/PHI)*(SQR((3/4)*(ROM1/(ROS-R0Ml))))*((FRM/3.7)"B) 
14 7 0 CW2 (I) =CW* ( ( FRO/ ( • 1 *PHI) ) * ( SQH ( ( 3/ 4) *CD (I) ) ) * ( (CV/PH I) "A) ) 
1480 IF CW2(I)>CW GOTO 1570 
·1490 CV2(I)=(CW2(I)/ROS)/((CW2(I)/ROS)+(l-CW2(I))/ROL) 
1500 CWl(I)=(CVl(I)*ROS)/((CVl(I)*ROS)+(l-CVl(I))*ROL) 
1510 CV3=CVl(I)+CV2(I) 'CHECK FOR CORRECT ASSUMPTION OF CVl(I) 
1520 RATIO=CW2(I)/CW 'CHECK FOR PART SUSPENSION 
1530 IF RATI0>.98 GOTO 1570 
15A0 IF ABS(CV-CV3)C.001 GOTO 1640 
1550 IF CV> CV3 THEN CVl(I)=CVl(I)+DCVl 
1560 IF CV< CV3 THEN CVl(I)=CVl(I)-DCVl 
1570 CV2(I)=CV*.99 
1580 CVl(I)=CV*.01 
1590 REM 
1600 REM *******************************~0 

GC'".O 1420 
GC'fO 1420 
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1610 REM , PARTICLE VELOCITY 
1620 REM********************************* 
1630 REM 
1640 PH= (1-PHI)/PHI 
1650 CWl(I)=(CVl(I)*ROS)/((CVl(I)*ROS)+(l-CVl(I))*ROL) 
1660 CW2(I)=(CV2(I)*ROS)/((CV2(I)*ROS)+(l-CV2(I))*ROL) 
1670 ROMl=(CVlT+CVl(I)*(l-PIT))*(ROS-ROL)+ROL 
1680 A=(l/PHI)*(SQR((3/4)*(ROMl/(ROS-ROMl))))*((FRM/3.7)AB) 
1690 Bl=(2*FROA(-l/3))-l/PHI 
1700 Al=(PH/PHI)*(SQR((3/4)*(ROMl/(ROS-ROMl))))*((FRM/3.7)ABl) 
1710 VSR=(CW2(I)/CW)*(.l*PHI)/(FRO*(SQR((3/4)*CD(I))))*PH*(CV/PHI)A(-Al) 
172 0 BE:TAl=-BETA* (CW2 (I) /CW)* ( 1/VSR) 'MATERIAL CONS'fANT 
1730 FSl=FSO*(l-(CW2(I)/CW)*VSR) 
1740 LE:'r VR=. 99 'SOLIDS TO MIXTURE VELOCI'rY RATIO 
1750 Y=({FRO/FRM)A2)*(1-(l/VR)*CV) 
1760 Z=FSl*(ROS/(ROS-ROL))-FL*(ROL/(ROS-ROL))*((l-CV)A2)/(VR-CV) 
1770 M=Y*(BE:TAl+(VRA2)*(FRM/2)*Z) 
1780 VRl=l-SQR(M) 
1790 IF ABS(VRl-VR)).001 THEN VR=VRl : GOTO 1750 
1800 VS(I)=VR*VM 
1810 CVT(I)=l/VR*CV 
1820 VSl(I)=VSR*VS(I) 
1830 VSl(l)=(VS(l)*CVT(l)-VS2(I)*CW2(I))/CWl(I) 
1840 VST=VST+VS(I)*DP(I) ' 
1850 VSlT=VSlT+VSl(I)*DP(l)*(CVl(l)/(CVl(I)+CV2(1))) 
1860 VS2T=VS2T+VS2(I)*DP(l)*(CV2(I)/(CVl{I)+CV2(I))) 
1870 CVlT=CVlT+CVl(I)*DP(I) 
1880 CV2T=CV2T+CV2(l)*DP(I) 
1890 PIT=PIT+DP(I) 
1900 NEXT I 
1910 REM 
1920 REM************************* 
1930 RE:M WATER DETE:RMINATION 
1940 RE:M ************************* 
1950 RE:M 
1960 CWlT=(CVlT*ROS)/((CVlT*ROS)+(l-CVlT)*ROL) 
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1970 MCVT=VM/VST*CV 
1980 SCV=CV1T+CV2T 
1990 VSS=CV*VM 
2000 AP=3.14*(DA2)/4 
2010 QS=VST*MCVT*AP 

' ' 

2020 VL=(VM-MCVT*VST)/(1-MCVT) 
2030 QL=VL*(l-MCVT)*AP 
2040 TC=QS*(3600*24*365*0P)*GAMA*SS/2200 
2050 TCW=QL*(3600*24*365*0P)*GAMA/2200 
2060 RTW=TCW/TC 
2080 R=D/2 
2090 ROM=CVlT*(ROS-ROL)+ROL 
2100 VP(N+l)=VP(N+l)*SQR(((ROS/ROM)-1)/((ROS/ROL)-l)) 
2110 USTAR=SQR(FL*VMA2/2) 
2120 Zl=VP(N+l)/(B4*K4*USTAR) 
2130 AD=(l/3)*(DM/(25.4*12)) 
2140 P=0 
2150 T=l:l 
2160 X3=(R-AD)/R 
2170 DH=-ATN(X3/SQR(-X3*X3+1))+1.5708 
2180 FPP=3.14159/90 
2190 PP2=(3.14159/2)+FPP/2 
2200 FOR H=DH TO (2*PP2) STEP FPP 

·2210 Tl=((l+COS(li))/(l-COS(H)))AZl*(SIN(H))A2*FPP 
2220 'r=T+Tl 
2230 NEXT H 
2240 CA=MCVT*AP/(2*RA2*((AD/(2*R-AD))AZl)*T) 
2250 FOR H=DH TO PP2 STEP FPP 
2260 Y=R-R*COS(H) 
2270 CY=CA*((2*R-Y)/Y*(AD/(2*R-AD)))AZ1 
2290 Pl=CY*(SIN(H))A2*FPP 
2300 P=P+Pl 
2310 NEXT H 
2320 CL=2*RA2/(AP/2)*P 
2330 CH=CVF*PHI 
2340 IF CL<CH GOTO 2380 
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2351l 
2361l 
2371l 
2381! 
2390 
2400 
2420 
2423 
2430 
2440 
2450 
2453 
2454 
2461! 
2461 
2462 
2464 
2465 
2466 
2467 
2470 
2481! 
2491l 
2500 
2510 

IF ABS(CL-CH)).01 THEN CW=CW-.01 
IF CW<.3 GOTO 2440 
IF ABS(CL-CH)>,01 GOTO 1060 
LPRINT "DT,D,CVT,CL= ";DT,D,MCVT,CL 
LPRINT "VP,VM,VS,VL= ";VP(N+l),VM,VST,VL 
LPRINT "CW,TC,TW,TW/TC= ";CW,TC,TCW,RTW 
LPRINT 
LPRINT 
GOTO 2460 
LPRINT "TOP SIZE, PIPE DIA, SUSP./CW RATIO";DT,D,CWF 
LPRINT "IMPROBABLE PARTICLE SIZE-PIPE DIA. COMBINATION" 
LPRINT 
LPRINT, 
NEXT J 
LPRINT 

LPRINT "---------------------------------------------
LPRINT 
LPRINT 
LPRINT 
LPRINT 
NEXT K 

"WATER TEMP. = 
= "SPEC. GRA. COAL 

"SIZE DIST. INDEX= 
"MAX. PERM, CONC, = 

"; TW 
"; SS 
II i NS 
II i CH 

DATA l,19,.26,3.125,.68,9.525,2.2,12,7,2,8,25,4,5.8,50,8,12,5 
DATA 1,1.5,2,2,5,3 
DATA 7i,.9,l.2,1,35,20,,91,.90,.92,.4 
END 
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