9,191 research outputs found

    Kaluza-Klein Induced Gravity Inflation

    Full text link
    A D-dimensional induced gravity theory is studied carefully in a 4+(D4)4 + (D-4) dimensional Friedmann-Robertson-Walker space-time. We try to extract information of the symmetry breaking potential in search of an inflationary solution with non-expanding internal-space. We find that the induced gravity model imposes strong constraints on the form of symmetry breaking potential in order to generate an acceptable inflationary universe. These constraints are analyzed carefully in this paper.Comment: 10 pages, title changed, corrected some typos, two additional comments adde

    The Chern-Simons Coefficient in Supersymmetric Non-abelian Chern-Simons Higgs Theories

    Get PDF
    By taking into account the effect of the would be Chern-Simons term, we calculate the quantum correction to the Chern-Simons coefficient in supersymmetric Chern-Simons Higgs theories with matter fields in the fundamental representation of SU(n). Because of supersymmetry, the corrections in the symmetric and Higgs phases are identical. In particular, the correction is vanishing for N=3 supersymmetric Chern-Simons Higgs theories. The result should be quite general, and have important implication for the more interesting case when the Higgs is in the adjoint representation.Comment: more references and explanation about rgularization dpendence are included, 13 pages, 1 figure, latex with revte

    Inflationary Universe in Higher Derivative Induced Gravity

    Get PDF
    In an induced-gravity model, the stability condition of an inflationary slow-rollover solution is shown to be ϕ0ϕ0V(ϕ0)=4V(ϕ0)\phi_0 \partial_{\phi_0}V(\phi_0)=4V(\phi_0). The presence of higher derivative terms will, however, act against the stability of this expanding solution unless further constraints on the field parameters are imposed. We find that these models will acquire a non-vanishing cosmological constant at the end of inflation. Some models are analyzed for their implication to the early universe.Comment: 6 pages, two typos correcte

    MACOC: a medoid-based ACO clustering algorithm

    Get PDF
    The application of ACO-based algorithms in data mining is growing over the last few years and several supervised and unsupervised learning algorithms have been developed using this bio-inspired approach. Most recent works concerning unsupervised learning have been focused on clustering, showing great potential of ACO-based techniques. This work presents an ACO-based clustering algorithm inspired by the ACO Clustering (ACOC) algorithm. The proposed approach restructures ACOC from a centroid-based technique to a medoid-based technique, where the properties of the search space are not necessarily known. Instead, it only relies on the information about the distances amongst data. The new algorithm, called MACOC, has been compared against well-known algorithms (K-means and Partition Around Medoids) and with ACOC. The experiments measure the accuracy of the algorithm for both synthetic datasets and real-world datasets extracted from the UCI Machine Learning Repository

    Kaluza-Klein Higher Derivative Induced Gravity

    Get PDF
    The existence and stability analysis of an inflationary solution in a D+4D+4-dimensional anisotropic induced gravity is presented in this paper. Nontrivial conditions in the field equations are shown to be compatible with a cosmological model in which the 4-dimension external space evolves inflationary, while, the D-dimension internal one is static. In particular, only two additional constraints on the coupling constants are derived from the abundant field equations and perturbation equations. In addition, a compact formula for the non-redundant 4+D dimensional Friedmann equation is also derived for convenience. Possible implications are also discussed in this paper.Comment: 13 pages, typos/errors corrected, three additional appendices adde

    Bianchi type I space and the stability of inflationary Friedmann-Robertson-Walker space

    Full text link
    Stability analysis of the Bianchi type I universe in pure gravity theory is studied in details. We first derive the non-redundant field equation of the system by introducing the generalized Bianchi type I metric. This non-redundant equation reduces to the Friedmann equation in the isotropic limit. It is shown further that any unstable mode of the isotropic perturbation with respect to a de Sitter background is also unstable with respect to anisotropic perturbations. Implications to the choice of physical theories are discussed in details in this paper.Comment: 5 pages, some comment adde

    Parity Violating Bosonic Loops at Finite Temperature

    Get PDF
    The finite temperature parity-violating contributions to the polarization tensor are computed at one loop in a system without fermions. The system studied is a Maxwell-Chern-Simons-Higgs system in the broken phase, for which the parity-violating terms are well known at zero temperature. At nonzero temperature the static and long-wavelength limits of the parity violating terms have very different structure, and involve non-analytic log terms depending on the various mass scales. At high temperature the boson loop contribution to the Chern-Simons term goes like T in the static limit and like T log T in the long-wavelength limit, in contrast to the fermion loop contribution which behaves like 1/T in the static limit and like log T/T in the long wavelength limit.Comment: 10 pp, 1 fig, revte

    Self-DUal SU(3) Chern-Simons Higgs Systems

    Get PDF
    We explore self-dual Chern-Simons Higgs systems with the local SU(3)SU(3) and global U(1)U(1) symmetries where the matter field lies in the adjoint representation. We show that there are three degenerate vacua of different symmetries and study the unbroken symmetry and particle spectrum in each vacuum. We classify the self-dual configurations into three types and study their properties.Comment: Columbia Preprint CU-TP-635, 19 page

    Friedmann Equation and Stability of Inflationary Higher Derivative Gravity

    Get PDF
    Stability analysis on the De Sitter universe in pure gravity theory is known to be useful in many aspects. We first show how to complete the proof of an earlier argument based on a redundant field equation. It is shown further that the stability condition applies to k0k \ne 0 Friedmann-Robertson-Walker spaces based on the non-redundant Friedmann equation derived from a simple effective Lagrangian. We show how to derive this expression for the Friedmann equation of pure gravity theory. This expression is also generalized to include scalar field interactions.Comment: Revtex, 6 pages, Add two more references, some typos correcte

    GTP and Ca2+ Modulate the Inositol 1,4,5-Trisphosphate-Dependent Ca2+ Release in Streptolysin O-Permeabilized Bovine Adrenal Chromaffin Cells

    Get PDF
    The inositol 1,4,5-trisphosphate (IP3)-induced Ca2+ release was studied using streptolysin O-permeabilized bovine adrenal chromaffin cells. The IP3-induced Ca2+ release was followed by Ca2+ reuptake into intracellular compartments. The IP3-induced Ca2+ release diminished after sequential applications of the same amount of IP3. Addition of 20 μM GTP fully restored the sensitivity to IP3. Guanosine 5'-O-(3-thio)triphosphate (GTPγS) could not replace GTP but prevented the action of GTP. The effects of GTP and GTPγS were reversible. Neither GTP nor GTPγS induced release of Ca2+ in the absence of IP3. The amount of Ca2+ whose release was induced by IP3 depended on the free Ca2+ concentration of the medium. At 0.3 μM free Ca2+, a half-maximal Ca2+ release was elicited with ∼0.1 μM IP3. At 1 μM free Ca2+, no Ca2+ release was observed with 0.1 μM IP3; at this Ca2+ concentration, higher concentrations of IP3 (0.25 μM) were required to evoke Ca2+ release. At 8 μM free Ca2+, even 0.25 μM IP3 failed to induce release of Ca2+ from the store. The IP3-induced Ca2+ release at constant low (0.2 μM) free Ca2+ concentrations correlated directly with the amount of stored Ca2+. Depending on the filling state of the intracellular compartment, 1 mol of IP3 induced release of between 5 and 30 mol of Ca2+
    corecore