504 research outputs found

    Fuzz-classification (p, l)-Angel: An enhanced hybrid artificial intelligence based fuzzy logic for multiple sensitive attributes against privacy breaches

    Get PDF
    The inability of traditional privacy-preserving models to protect multiple datasets based on sensitive attributes has prompted researchers to propose models such as SLOMS, SLAMSA, (p, k)-Angelization, and (p, l)-Angelization, but these were found to be insufficient in terms of robust privacy and performance. (p, l)-Angelization was successful against different privacy disclosures, but it was not efficient. To the best of our knowledge, no robust privacy model based on fuzzy logic has been proposed to protect the privacy of sensitive attributes with multiple records. In this paper, we suggest an improved version of (p, l)-Angelization based on a hybrid AI approach and privacy-preserving approach like Generalization. Fuzz-classification (p, l)-Angel uses artificial intelligence based fuzzy logic for classification, a high-dimensional segmentation technique for segmenting quasi-identifiers and multiple sensitive attributes. We demonstrate the feasibility of the proposed solution by modelling and analyzing privacy violations using High-Level Petri Nets. The results of the experiment demonstrate that the proposed approach produces better results in terms of efficiency and utility

    Review on Recent Advances in the Removal of Organic Drugs by Advanced Oxidation Processes

    Get PDF
    In recent years, due to the high consumption of drugs both for human needs and for their growing use, especially as regards antibiotics, in the diet of livestock, water pollution has reached very high levels and attracted widespread attention. Drugs have a stable chemical structure and are recalcitrant to many treatments, especially biological ones. Among the methods that have shown high efficiency are advanced oxidation processes (AOPs) which are, among other things, inexpensive and eco-friendly. AOPs are based on the production of reactive oxygen species (ROS) able to degrade organic pollutants in wastewater. The main problem related to the degradation of drugs is their partial oxidation to compounds that are often more harmful than their precursors. In this review, which is not intended to be exhaustive, we provide an overview of recent advances in the removal of organic drugs via advanced oxidation processes (AOPs). The salient points of each process, highlighting advantages and disadvantages, have been summarized. In particular, the use of AOPs such as UV, ozone, Fenton-based AOPs and heterogeneous photocatalysis in the removal of some of the most common drugs (tetracycline, ibuprofen, oxytetracycline, lincomycin) has been reported

    Luminescent, sorptive and antibacterial potential of bismuth-organic framework

    Get PDF
    Metal organic frameworks are formed by the three-dimensional linkage of metal cores and organic linkers. In this work, bismuth-based metal organic framework (Bi-MOF) has been synthesized by using 5-hydroxyisophthalic acid (H2HIA) as linker via hydrothermal method. The said MOF was structurally characterized by UV/Vis, Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), 1H NMR, energy dispersive spectroscopy (EDS), thermogravimetric analysis (TGA) and X-ray diffraction technique. This MOF showed highly porous structure with surface area 1096 m2/g as determined by BET analysis. A model batch adsorption experiment was performed to evaluate the efficiency of methylene blue (MB) dye removal from aqueous media. It was found that monolayer adsorption capacity calculated from the Langmuir isotherm was 0.6240 mg/g. Bi-MOF was also screened for its antibacterial and luminescent behavior.                     KEY WORDS: Bismuth, Metal-organic Frameworks, Luminescence, Sorption   Bull. Chem. Soc. Ethiop. 2021, 35(1), 119-128. DOI: https://dx.doi.org/10.4314/bcse.v35i1.1

    Environmental monitoring smart system with selfsustaining wireless sensor network using data validation algorithms

    Get PDF
    Study in Wireless Sensor Network (WSN) has been becoming an emerging and promising research topic aiming for the advancement in the Internet of Things (IoT) for a reliable connection. The capability of the wireless sensor to be used in a complex environment can become hard to reach areas and also be able to communicate in an ad-hoc manner, attracted researchers in recent times. Development in wireless sensor network producing a lot of new applications to sense environment remotely are facing challenges restricting it to perform up to its potential. Data validation and data reliability are such existing problems in this domain that needed to be addressed. Because sensed data cannot be blindly trusted upon, as it may have faults and errors occurred with-in the sensing environment. Besides, to guarantee the active state of the sensing system in a remote area is also essential in terms of power usage and management. The focus of the paper is data validation acquired from sensors deployed in remote areas. Although, lots of data validation algorithms have been proposed by researchers to identify single data fault. However, our research identifies multiple faults, namely spike fault, out of range fault, outliers, and stuck at fault using a hybrid form of an algorithm. A comparison with the existing algorithm shows that the proposed algorithm improved data validation by 97 % in detecting multiple data faults using Artificial Intelligence techniques

    A convenient method for the syntheses of 4,5-glycals

    Get PDF
    808-80

    Implications of invariance of the Hamiltonian under canonical transformations in phase space

    Get PDF
    We observe that, within the effective generating function formalism for the implementation of canonical transformations within wave mechanics, non-trivial canonical transformations which leave invariant the form of the Hamilton function of the classical analogue of a quantum system manifest themselves in an integral equation for its stationary state eigenfunctions. We restrict ourselves to that subclass of these dynamical symmetries for which the corresponding effective generating functions are necessaarily free of quantum corrections. We demonstrate that infinite families of such transformations exist for a variety of familiar conservative systems of one degree of freedom. We show how the geometry of the canonical transformations and the symmetry of the effective generating function can be exploited to pin down the precise form of the integral equations for stationary state eigenfunctions. We recover several integral equations found in the literature on standard special functions of mathematical physics. We end with a brief discussion (relevant to string theory) of the generalization to scalar field theories in 1+1 dimensions.Comment: REVTeX v3.1, 13 page

    Analytical solutions for two atoms in a harmonic trap: p-wave interactions

    Full text link
    We derive analytical solutions for the system of two ultracold spin-polarized fermions interacting in p wave and confined in an axially symmetric harmonic trap. To this end we utilize p-wave pseudopotential with an energy-dependent scattering volume. This allows to describe the scattering in tight trapping potentials in the presence of scattering resonances. We verify predictions of the pseudopotential treatment for some model interaction potential, obtaining an excellent agreement with exact energy levels. Then we turn to the experimentally relevant case of neutral atom interactions in the vicinity of a p-wave Feshbach resonance. In the framework of the multichannel quantum-defect theory we derive relatively simple formula for an energy-dependent scattering volume, and later we apply it to investigate the energy spectrum of trapped atoms close to the p-wave Feshbach resonance.Comment: 13 pages, 5 figure

    An axiomatic approach to the non-linear theory of generalized functions and consistency of Laplace transforms

    Get PDF
    We offer an axiomatic definition of a differential algebra of generalized functions over an algebraically closed non-Archimedean field. This algebra is of Colombeau type in the sense that it contains a copy of the space of Schwartz distributions. We study the uniqueness of the objects we define and the consistency of our axioms. Next, we identify an inconsistency in the conventional Laplace transform theory. As an application we offer a free of contradictions alternative in the framework of our algebra of generalized functions. The article is aimed at mathematicians, physicists and engineers who are interested in the non-linear theory of generalized functions, but who are not necessarily familiar with the original Colombeau theory. We assume, however, some basic familiarity with the Schwartz theory of distributions.Comment: 23 page
    corecore