## Note

## A convenient method for the syntheses of 4,5 -glycals ${ }^{\dagger}$

Vijayavitthal T Mathad, Shefali, Kanwal Raj \& Amiya P Bhaduri<br>Medicinal Chemistry Division, Central Drug Research Institute, Lucknow 226 001, India<br>Received 28 June 1996; accepted (revised) 18 December 1996

Pyridinium chlorochromate mediated oxidation of methyl 2,3,4-tri-O-acetyl- $\alpha$-D-hexoses $\mathbf{1 , 2}$, and $\mathbf{3}$ constitutes a new and convenient method for synthesizing 4,5 -glycals.

Unsaturated hexoses have been used as chiral synthons for the syntheses of natural products like olivin ${ }^{1}$, actinobolin ${ }^{2}$, carbomycin and related antibiotics ${ }^{3}$ and other complex organic compounds ${ }^{4}$. The position of double bond in these sugars (1,2-, 2,3-, 3,4- and 4,5-glycals) is of concern for designing the synthetic strategy for obtaining these molecules. The reported procedures for the preparation of 4,5glycals involve the use of oxidants like dimethylsulfoxide (DMSO) activated by sulfur trioxide- pyri-dine-triethylamine complex ${ }^{5}$ and oxalyl chloride in DMSO in the presence of triethylamine ${ }^{6}$. This communication describes a convenient method for obtaining 4,5- glycals of some hexoses in. excellent yields using pyridinium chlorochromate (PCC) as oxidant.

Partially protected derivatives of hexoses, viz. methyl $\alpha$-D-glucopyranoside 1 , methyl $\alpha$-D-galactopyranoside 2 and methyl $\alpha$-D-mannopyranoside 3 were prepared by following the reported procedures ${ }^{7}$. Oxidation of the protected alcohols $\mathbf{1}$ and 2 with PCC in dry toluene at reflux temperature for $8-10 \mathrm{hrs}$ yielded the unsaturated aldehyde 4 whereas alcohol 3 under similar condition gave the aldehyde 5 (cf Scheme I) in 70-75\% yields as syrupy liquids. Reduction of these aldehydes ( $\mathbf{4}$ and 5 ) with sodium borohydride in methanol in the presence of Amberlite IR-120 $\left(\mathrm{H}^{+}\right)$ion exchange resin gave the protected glycals 6 and 7 in excellent yields ( $80-85 \%$ ).

[^0]

Deprotection of these glycals with sodium methoxide in methanol furnished the 4,5-glycals 8 and 9 (Scheme I) in 70-75\% yields. The structures of all the compounds were characterised by FAB MS, ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectroscopic techniques.

## Experimental Section

IR Spectra were recorded on a Perkin-Elmer PE 557 spectrometer ( $v_{\text {max }}$ in $\mathrm{cm}^{-1}$ ). FAB mass spectra were recorded on a JOEL SX 102/DA 6000 mass spectrometer using Argon/Xenon $(6 \mathrm{kV}, 10 \mathrm{~mA})$ as the FAB gas. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on the Bruker WM-400 FT instrument using TMS as internal reference (chemical shifts in $\delta, \mathrm{ppm}$ ).

## Syntheses of 4,5-unsaturated aldehydes 4 and 5:

 General procedure. PCC $(0.32 \mathrm{~g}, 1.5 \mathrm{mmole})$ was added portionwise to a stirred solution of desired candidate from the compounds $\mathbf{1 - 3}(0.32 \mathrm{~g}, 1 \mathrm{mmole})$ in dry toluene $(20 \mathrm{~mL})$ and the mixture was refluxed $\left(110^{\circ} \mathrm{C}\right)$ for $8-10 \mathrm{hrs}$. It was then cooled to room temperature $\left(25^{\circ} \mathrm{C}\right)$ and filtered through Celite. The residue obtained was then washed with toluene ( $3 \times$ $10 \mathrm{~mL})$ and the combined organic extract was concentrated under vaccum to yield a crude residue which was purified by column chromatography over silica gel. Elution with methanol-chloroform (1:99, $\mathrm{v} / \mathrm{v}$ ) gave the aldehydes $\mathbf{4}$ or 5 as a semisolid.4: Yield 72.3\%; IR(KBr): $1718(\mathrm{CH}=\mathrm{O})$, 1660(C=C); MS:m/z 259(M+1), 281(M $\left.{ }^{+}+\mathrm{Na}\right) ;{ }^{1} \mathrm{H}$ NMR ( $\mathrm{CDCl}_{3}$ ): $9.25(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CHO}), 5.91(\mathrm{~d}, J=3 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{H}-4) 5.72$ (dd, $J=12,4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3), 5.20(\mathrm{~m}$, $2 \mathrm{H}, \mathrm{H}-1$ and $\mathrm{H}-2), 3.45(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OMe}), 2.12$ and 2.14(2s, 3Heach, $\left.2 \mathrm{xOCOCH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ : $185.31(\mathrm{CHO}), 169.80_{\mathrm{e}^{*}}(\mathrm{e}$, denotes overlapping with other signals); $\left(2 \mathrm{xOCOCH}_{3}\right), 148.82(\mathrm{C}-5), 116.83$ (C-4), 98.19 (C-1), 68.58(C-3), 66.26(C-2), 56.73 $\left(\mathrm{OCH}_{3}\right), 20.56\left(2 \mathrm{xOCOCH}_{3}\right)$. [Spectra of the 4,5-unsaturated derivatives 4 of methyl 2,3,4-tri-O-acetyl-$\alpha$-D-glucopyranoside 1 and methyl 2,3,4-tri-O-acetyl- $\alpha$-D-galactopyranoside 2 were superimposable with each other]

5: Yield $73.0 \%$; $\operatorname{IR}(\mathrm{KBr}): 1720(\mathrm{CH}=\mathrm{O}), 1660$ (C=C); MS:m/z $259\left(\mathrm{M}^{+}+1\right), 281\left(\mathrm{M}^{+}+\mathrm{Na}\right) ;{ }^{1} \mathrm{H}$ NMR ( $\mathrm{CDCl}_{3}$ ): $9.25(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CHO}), 5.86(\mathrm{~d}, J=2 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{H}-4), 5.80(\mathrm{dd}, J=4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3), 5.32$ (dd, $J=4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2), 5.14(\mathrm{~d}, J=4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1), 3.52(\mathrm{~s}$, $\left.3 \mathrm{H}, \mathrm{OCH}_{3}\right), 2.12_{\mathrm{e}}\left(\mathrm{s}, 6 \mathrm{H}, 2 \mathrm{xOCOCH}_{3}\right) ;{ }^{13} \mathrm{C}$ $\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): 185.63(\mathrm{CHO}), 169.78$ and 169.67 $\left(2 \mathrm{xOCOCH}_{3}\right), \quad 149.10(\mathrm{C}-5), 117.69(\mathrm{C}-4)$, $98.96(\mathrm{C}-1), 64.26(\mathrm{C}-3), 63.34(\mathrm{C}-2), 56.59\left(\mathrm{OCH}_{3}\right)$, $20.48_{\mathrm{e}}\left(2 \mathrm{xOCOCH}_{3}\right)$

Syntheses of 2,3-di- O-acetyl- $\alpha$-D-methyl 4,5glycals 6 and 7: General procedure. To a stirred solution of the desired compound 4 or $5(0.25 \mathrm{~g}, 1$ mmole) in dry methanol ( 15 mL ) in the presence of Amberlite IR-120 ( $\mathrm{H}^{+}$) ion exchange resin $(0.20 \mathrm{~g})$ was added $\mathrm{NaBH}_{4}$ ( $0.012 \mathrm{~g}, 0.33$ mmole) in portions. The reaction mixture was then allowed to stir at room temperature $\left(25^{\circ} \mathrm{C}\right)$ for 1 hr , filtered through glass wool into a round bottomed flask containing a drop of acetic acid and was evaporated in vaccuo. Water $(20 \mathrm{~mL})$ was then added to it and extracted with chloroform ( $3 \times 30 \mathrm{~mL}$ ). Usual work-up of the organic layer furnished a crude residue which was purified by column chromatography over silica gel. Elution with methanol-chloroform ( $1: 49, \mathrm{v} / \mathrm{v}$ ) gave pure alcohol 6 or 7 as a semisolid.

6: Yield. 84\%; MS; m/z $261\left(\mathrm{M}^{+}+1\right), 283\left(\mathrm{M}^{+}+\right.$ $\mathrm{Na}) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): 5.42(\mathrm{dd}, J=3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3)$, $5.14(\mathrm{dd}, \mathrm{J}-3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2), 5.02\left(\mathrm{~m}_{\mathrm{e}}, 2 \mathrm{H}, \mathrm{H}-4\right.$ and $\mathrm{H}-1$ ), 4.08 (bs, $2 \mathrm{H}, \mathrm{H}-6$ ), 3.54 ( $\mathrm{s}, 3 \mathrm{H}, \mathrm{OCH}_{3}$ ), 2.12 and $2.06(2 \mathrm{~s}, 3 \mathrm{H}, 2 \mathrm{xOCOCH} 3) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ : 170.28 and $170.19\left(2 \mathrm{xOCOCH}_{3}\right), 152.64(\mathrm{C}-5)$,
97.26 (C-4), 95.69 (C-1), 69.19 (C-3), 66.89(C-2), $61.67(\mathrm{C}-6), 56.61\left(\mathrm{OCH}_{3}, 20.95\right.$ and 20.74 ( 2 x $\left.\mathrm{OCOCH}_{3}\right)$.

7: Yield 85\%; MS: m/z $261\left(\mathrm{M}^{+}+1\right), 283\left(\mathrm{M}^{+}+\right.$ $\mathrm{Na}) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right): 5.55(\mathrm{t}, J=3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3)$, $5.16(\mathrm{t}, J=4.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2), 5.00(\mathrm{~d}, J=6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1)$, 4.95 (d, $J=0.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4), 4.08$ (dd, $J=3 \mathrm{~Hz}, 2 \mathrm{H}$, $\mathrm{H}-6), 3.52\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 2.10$ and $2.09(2 \mathrm{~s}, 3 \mathrm{H}$ each, $\left.2 \times \mathrm{OCOCH}_{3}\right):{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): 170.33$ and $170.18\left(2 \mathrm{x} \mathrm{OCOCH}_{3}\right) \quad 152.71(\mathrm{C}-5), 97.28(\mathrm{C}-4)$, 96.19 (C-1), 69.21 (C-3), 66.90 (C-2), 61.67 (C-6), $57.05\left(\mathrm{OCH}_{3}\right), 20.98 \& 20.81\left(2 \mathrm{xOCOCH}_{3}\right)$.
Syntheses of 4,5-glycals 8 and 9: General procedure $\mathrm{NaOMe}(0.05 \mathrm{~g}, 1 \mathrm{mmole})$ was added to a stirred solution of 6. or $7(0.26 \mathrm{~g}, 1 \mathrm{mmole})$ in dry methanol ( 10 mL ) and the mixture was stirred at room temperature $\left(25^{\circ} \mathrm{C}\right)$ for 1 hr . It was then passed through band of Amberlite IR-120 $\left(\mathrm{H}^{+}\right)$ion exchange resin and the eluent evaporated in vaccuo to yield a crude residue. Purification by column chromatography over silica gel using methanol-chloroform (1:9 $\mathrm{v} / \mathrm{v}$ ) as eluent gave pure 8 or 9 as a semisolid.

## Acknowledgement

Authors (V T M \& Shefali) are thankful to Ministry of Health \& Family Welfare and Indian Council of Agricultural Research respectively for financial assistance.

## References

1 Frank R W \& John T V, J Org Chem., 48, 1983, 3269.
2 Rahman M A \& Fraser Reid B J, JAm Chem Soc, 107, 1985, 5576.

3 (a) Tatsuta K, Tanaka A, Fusimoto K, Kinoshita M \& Limezawa S, J Am Chem Soc, 99, 1977, 5826;
(b) Tatsuta K, Amemiya Y, Maniwa. S \& Kinoshita M, Tet lett. 21, 1980, 2837.
4 Guliano R M, Buzby J H \& Macropulos N, J Org Chem, 55, 1990, 3555.
5(a) Parikh J R and Doering W Von E, JAm Chem Soc, 89, 1967. 5505
(b) Cree G M, Mackie D W \& Parlin A S, Can J Chem, 47 , 1969, 511.
6 Mancuso A J \& Swern D, Synthesis, 1981, 165.
7 Whistler R L \& BeMiller J N, Methods in carbohydrate chemistry, vol. 6 (Academic Press New York) 1972, 411.

[^1]
[^0]:    ${ }^{\dagger}$ CDRI Communication No. 5564

[^1]:    *Where e denotes overlapping with other signals

