350 research outputs found

    Fast exact algorithms for some connectivity problems parametrized by clique-width

    Full text link
    Given a clique-width kk-expression of a graph GG, we provide 2O(k)n2^{O(k)}\cdot n time algorithms for connectivity constraints on locally checkable properties such as Node-Weighted Steiner Tree, Connected Dominating Set, or Connected Vertex Cover. We also propose a 2O(k)n2^{O(k)}\cdot n time algorithm for Feedback Vertex Set. The best running times for all the considered cases were either 2O(klog(k))nO(1)2^{O(k\cdot \log(k))}\cdot n^{O(1)} or worse

    More applications of the d-neighbor equivalence: acyclicity and connectivity constraints

    Full text link
    In this paper, we design a framework to obtain efficient algorithms for several problems with a global constraint (acyclicity or connectivity) such as Connected Dominating Set, Node Weighted Steiner Tree, Maximum Induced Tree, Longest Induced Path, and Feedback Vertex Set. We design a meta-algorithm that solves all these problems and whose running time is upper bounded by 2O(k)nO(1)2^{O(k)}\cdot n^{O(1)}, 2O(klog(k))nO(1)2^{O(k \log(k))}\cdot n^{O(1)}, 2O(k2)nO(1)2^{O(k^2)}\cdot n^{O(1)} and nO(k)n^{O(k)} where kk is respectively the clique-width, Q\mathbb{Q}-rank-width, rank-width and maximum induced matching width of a given decomposition. Our meta-algorithm simplifies and unifies the known algorithms for each of the parameters and its running time matches asymptotically also the running times of the best known algorithms for basic NP-hard problems such as Vertex Cover and Dominating Set. Our framework is based on the dd-neighbor equivalence defined in [Bui-Xuan, Telle and Vatshelle, TCS 2013]. The results we obtain highlight the importance of this equivalence relation on the algorithmic applications of width measures. We also prove that our framework could be useful for W[1]W[1]-hard problems parameterized by clique-width such as Max Cut and Maximum Minimal Cut. For these latter problems, we obtain nO(k)n^{O(k)}, nO(k)n^{O(k)} and n2O(k)n^{2^{O(k)}} time algorithms where kk is respectively the clique-width, the Q\mathbb{Q}-rank-width and the rank-width of the input graph

    An Upper Bound on the Size of Obstructions for Bounded Linear Rank-Width

    Full text link
    We provide a doubly exponential upper bound in pp on the size of forbidden pivot-minors for symmetric or skew-symmetric matrices over a fixed finite field F\mathbb{F} of linear rank-width at most pp. As a corollary, we obtain a doubly exponential upper bound in pp on the size of forbidden vertex-minors for graphs of linear rank-width at most pp. This solves an open question raised by Jeong, Kwon, and Oum [Excluded vertex-minors for graphs of linear rank-width at most kk. European J. Combin., 41:242--257, 2014]. We also give a doubly exponential upper bound in pp on the size of forbidden minors for matroids representable over a fixed finite field of path-width at most pp. Our basic tool is the pseudo-minor order used by Lagergren [Upper Bounds on the Size of Obstructions and Interwines, Journal of Combinatorial Theory Series B, 73:7--40, 1998] to bound the size of forbidden graph minors for bounded path-width. To adapt this notion into linear rank-width, it is necessary to well define partial pieces of graphs and merging operations that fit to pivot-minors. Using the algebraic operations introduced by Courcelle and Kant\'e, and then extended to (skew-)symmetric matrices by Kant\'e and Rao, we define boundaried ss-labelled graphs and prove similar structure theorems for pivot-minor and linear rank-width.Comment: 28 pages, 1 figur

    Linear rank-width of distance-hereditary graphs II. Vertex-minor obstructions

    Full text link
    In the companion paper [Linear rank-width of distance-hereditary graphs I. A polynomial-time algorithm, Algorithmica 78(1):342--377, 2017], we presented a characterization of the linear rank-width of distance-hereditary graphs, from which we derived an algorithm to compute it in polynomial time. In this paper, we investigate structural properties of distance-hereditary graphs based on this characterization. First, we prove that for a fixed tree TT, every distance-hereditary graph of sufficiently large linear rank-width contains a vertex-minor isomorphic to TT. We extend this property to bigger graph classes, namely, classes of graphs whose prime induced subgraphs have bounded linear rank-width. Here, prime graphs are graphs containing no splits. We conjecture that for every tree TT, every graph of sufficiently large linear rank-width contains a vertex-minor isomorphic to TT. Our result implies that it is sufficient to prove this conjecture for prime graphs. For a class Φ\Phi of graphs closed under taking vertex-minors, a graph GG is called a vertex-minor obstruction for Φ\Phi if GΦG\notin \Phi but all of its proper vertex-minors are contained in Φ\Phi. Secondly, we provide, for each k2k\ge 2, a set of distance-hereditary graphs that contains all distance-hereditary vertex-minor obstructions for graphs of linear rank-width at most kk. Also, we give a simpler way to obtain the known vertex-minor obstructions for graphs of linear rank-width at most 11.Comment: 38 pages, 13 figures, 1 table, revised journal version. A preliminary version of Section 5 appeared in the proceedings of WG1

    Linear rank-width of distance-hereditary graphs I. A polynomial-time algorithm

    Full text link
    Linear rank-width is a linearized variation of rank-width, and it is deeply related to matroid path-width. In this paper, we show that the linear rank-width of every nn-vertex distance-hereditary graph, equivalently a graph of rank-width at most 11, can be computed in time O(n2log2n)\mathcal{O}(n^2\cdot \log_2 n), and a linear layout witnessing the linear rank-width can be computed with the same time complexity. As a corollary, we show that the path-width of every nn-element matroid of branch-width at most 22 can be computed in time O(n2log2n)\mathcal{O}(n^2\cdot \log_2 n), provided that the matroid is given by an independent set oracle. To establish this result, we present a characterization of the linear rank-width of distance-hereditary graphs in terms of their canonical split decompositions. This characterization is similar to the known characterization of the path-width of forests given by Ellis, Sudborough, and Turner [The vertex separation and search number of a graph. Inf. Comput., 113(1):50--79, 1994]. However, different from forests, it is non-trivial to relate substructures of the canonical split decomposition of a graph with some substructures of the given graph. We introduce a notion of `limbs' of canonical split decompositions, which correspond to certain vertex-minors of the original graph, for the right characterization.Comment: 28 pages, 3 figures, 2 table. A preliminary version appeared in the proceedings of WG'1

    A Note on Graphs of Linear Rank-Width 1

    Full text link
    We prove that a connected graph has linear rank-width 1 if and only if it is a distance-hereditary graph and its split decomposition tree is a path. An immediate consequence is that one can decide in linear time whether a graph has linear rank-width at most 1, and give an obstruction if not. Other immediate consequences are several characterisations of graphs of linear rank-width 1. In particular a connected graph has linear rank-width 1 if and only if it is locally equivalent to a caterpillar if and only if it is a vertex-minor of a path [O-joung Kwon and Sang-il Oum, Graphs of small rank-width are pivot-minors of graphs of small tree-width, arxiv:1203.3606] if and only if it does not contain the co-K_2 graph, the Net graph and the 5-cycle graph as vertex-minors [Isolde Adler, Arthur M. Farley and Andrzej Proskurowski, Obstructions for linear rank-width at most 1, arxiv:1106.2533].Comment: 9 pages, 2 figures. Not to be publishe

    Polynomial Delay Algorithm for Listing Minimal Edge Dominating sets in Graphs

    Full text link
    The Transversal problem, i.e, the enumeration of all the minimal transversals of a hypergraph in output-polynomial time, i.e, in time polynomial in its size and the cumulated size of all its minimal transversals, is a fifty years old open problem, and up to now there are few examples of hypergraph classes where the problem is solved. A minimal dominating set in a graph is a subset of its vertex set that has a non empty intersection with the closed neighborhood of every vertex. It is proved in [M. M. Kant\'e, V. Limouzy, A. Mary, L. Nourine, On the Enumeration of Minimal Dominating Sets and Related Notions, In Revision 2014] that the enumeration of minimal dominating sets in graphs and the enumeration of minimal transversals in hypergraphs are two equivalent problems. Hoping this equivalence can help to get new insights in the Transversal problem, it is natural to look inside graph classes. It is proved independently and with different techniques in [Golovach et al. - ICALP 2013] and [Kant\'e et al. - ISAAC 2012] that minimal edge dominating sets in graphs (i.e, minimal dominating sets in line graphs) can be enumerated in incremental output-polynomial time. We provide the first polynomial delay and polynomial space algorithm that lists all the minimal edge dominating sets in graphs, answering an open problem of [Golovach et al. - ICALP 2013]. Besides the result, we hope the used techniques that are a mix of a modification of the well-known Berge's algorithm and a strong use of the structure of line graphs, are of great interest and could be used to get new output-polynomial time algorithms.Comment: proofs simplified from previous version, 12 pages, 2 figure

    On the Enumeration of Minimal Dominating Sets and Related Notions

    Full text link
    A dominating set DD in a graph is a subset of its vertex set such that each vertex is either in DD or has a neighbour in DD. In this paper, we are interested in the enumeration of (inclusion-wise) minimal dominating sets in graphs, called the Dom-Enum problem. It is well known that this problem can be polynomially reduced to the Trans-Enum problem in hypergraphs, i.e., the problem of enumerating all minimal transversals in a hypergraph. Firstly we show that the Trans-Enum problem can be polynomially reduced to the Dom-Enum problem. As a consequence there exists an output-polynomial time algorithm for the Trans-Enum problem if and only if there exists one for the Dom-Enum problem. Secondly, we study the Dom-Enum problem in some graph classes. We give an output-polynomial time algorithm for the Dom-Enum problem in split graphs, and introduce the completion of a graph to obtain an output-polynomial time algorithm for the Dom-Enum problem in P6P_6-free chordal graphs, a proper superclass of split graphs. Finally, we investigate the complexity of the enumeration of (inclusion-wise) minimal connected dominating sets and minimal total dominating sets of graphs. We show that there exists an output-polynomial time algorithm for the Dom-Enum problem (or equivalently Trans-Enum problem) if and only if there exists one for the following enumeration problems: minimal total dominating sets, minimal total dominating sets in split graphs, minimal connected dominating sets in split graphs, minimal dominating sets in co-bipartite graphs.Comment: 15 pages, 3 figures, In revisio
    corecore