We prove that a connected graph has linear rank-width 1 if and only if it is
a distance-hereditary graph and its split decomposition tree is a path. An
immediate consequence is that one can decide in linear time whether a graph has
linear rank-width at most 1, and give an obstruction if not. Other immediate
consequences are several characterisations of graphs of linear rank-width 1. In
particular a connected graph has linear rank-width 1 if and only if it is
locally equivalent to a caterpillar if and only if it is a vertex-minor of a
path [O-joung Kwon and Sang-il Oum, Graphs of small rank-width are pivot-minors
of graphs of small tree-width, arxiv:1203.3606] if and only if it does not
contain the co-K_2 graph, the Net graph and the 5-cycle graph as vertex-minors
[Isolde Adler, Arthur M. Farley and Andrzej Proskurowski, Obstructions for
linear rank-width at most 1, arxiv:1106.2533].Comment: 9 pages, 2 figures. Not to be publishe