research

An Upper Bound on the Size of Obstructions for Bounded Linear Rank-Width

Abstract

We provide a doubly exponential upper bound in pp on the size of forbidden pivot-minors for symmetric or skew-symmetric matrices over a fixed finite field F\mathbb{F} of linear rank-width at most pp. As a corollary, we obtain a doubly exponential upper bound in pp on the size of forbidden vertex-minors for graphs of linear rank-width at most pp. This solves an open question raised by Jeong, Kwon, and Oum [Excluded vertex-minors for graphs of linear rank-width at most kk. European J. Combin., 41:242--257, 2014]. We also give a doubly exponential upper bound in pp on the size of forbidden minors for matroids representable over a fixed finite field of path-width at most pp. Our basic tool is the pseudo-minor order used by Lagergren [Upper Bounds on the Size of Obstructions and Interwines, Journal of Combinatorial Theory Series B, 73:7--40, 1998] to bound the size of forbidden graph minors for bounded path-width. To adapt this notion into linear rank-width, it is necessary to well define partial pieces of graphs and merging operations that fit to pivot-minors. Using the algebraic operations introduced by Courcelle and Kant\'e, and then extended to (skew-)symmetric matrices by Kant\'e and Rao, we define boundaried ss-labelled graphs and prove similar structure theorems for pivot-minor and linear rank-width.Comment: 28 pages, 1 figur

    Similar works