7 research outputs found

    Biochar as an Eco-Friendly and Economical Adsorbent for the Removal of Colorants (Dyes) from Aqueous Environment: A Review

    No full text
    Dyes (colorants) are used in many industrial applications, and effluents of several industries contain toxic dyes. Dyes exhibit toxicity to humans, aquatic organisms, and the environment. Therefore, dyes containing wastewater must be properly treated before discharging to the surrounding water bodies. Among several water treatment technologies, adsorption is the most preferred technique to sequester dyes from water bodies. Many studies have reported the removal of dyes from wastewater using biochar produced from different biomass, e.g., algae and plant biomass, forest, and domestic residues, animal waste, sewage sludge, etc. The aim of this review is to provide an overview of the application of biochar as an eco-friendly and economical adsorbent to remove toxic colorants (dyes) from the aqueous environment. This review highlights the routes of biochar production, such as hydrothermal carbonization, pyrolysis, and hydrothermal liquefaction. Biochar as an adsorbent possesses numerous advantages, such as being eco-friendly, low-cost, and easy to use; various precursors are available in abundance to be converted into biochar, it also has recyclability potential and higher adsorption capacity than other conventional adsorbents. From the literature review, it is clear that biochar is a vital candidate for removal of dyes from wastewater with adsorption capacity of above 80%

    Synthesis of itaconic acid from agricultural waste using novel <i>Aspergillus niveus</i>

    No full text
    <p>Filamentous fungi from the genus <i>Aspergillus</i> are of high importance for the production of organic acids. Itaconic acid (IA) is considered as an important component for the production of synthetic fibers, resin, plastics, rubber, paints, coatings, adhesives, thickeners and binders. <i>Aspergillus niveus</i> MG183809 was isolated from the soil sample (wastewater unit) which was collected from Avadi, Chennai, India. In the present study, itaconic acid was successfully produced by isolated <i>A. niveus</i> by submerged batch fermentation. In the fermentation process, various low-cost substrates like corn starch, wheat flour and sweet potato were used for itaconic acid production. Further, the factor influencing parameters such as substrate concentration and incubation period were optimized. Maximum yield of itaconic acid (15.65 ± 1.75 g/L) was achieved by using <i>A. niveus</i> from corn starch at a concentration of 120 g/L after 168 hr (pH 3.0). And also extraction of itaconic acid from the fermentation was performed with 91.96 ± 1.57 degree of extraction.</p
    corecore