584 research outputs found

    Searching for Extra Dimensions in the Early Universe

    Full text link
    We investigate extra spatial dimensions (D=3+ϵD = 3+\epsilon) in the early universe using very high resolution molecular rotational spectroscopic data derived from a large molecular cloud containing moderately cold carbon monoxide gas at Z 6.42\approx 6.42. It turns out that the ϵ\epsilon-dependent quantum mechanical wavelength transitions are solvable for a linear molecule and we present the solution here. The CO microwave data allows a very precise determination of =0.00000657±.10003032 = -0.00000657 \pm .10003032. The probability that 0 \neq 0 is one in 7794, only 850 million years (using the standard cosmology) after the Big Bang.Comment: 17 pages, 2 figure

    Geometrically Induced Gauge Structure on Manifolds Embedded in a Higher Dimensional Space

    Get PDF
    We explain in a context different from that of Maraner the formalism for describing motion of a particle, under the influence of a confining potential, in a neighbourhood of an n-dimensional curved manifold M^n embedded in a p-dimensional Euclidean space R^p with p >= n+2. The effective Hamiltonian on M^n has a (generally non-Abelian) gauge structure determined by geometry of M^n. Such a gauge term is defined in terms of the vectors normal to M^n, and its connection is called the N-connection. In order to see the global effect of this type of connections, the case of M^1 embedded in R^3 is examined, where the relation of an integral of the gauge potential of the N-connection (i.e., the torsion) along a path in M^1 to the Berry's phase is given through Gauss mapping of the vector tangent to M^1. Through the same mapping in the case of M^1 embedded in R^p, where the normal and the tangent quantities are exchanged, the relation of the N-connection to the induced gauge potential on the (p-1)-dimensional sphere S^{p-1} (p >= 3) found by Ohnuki and Kitakado is concretely established. Further, this latter which has the monopole-like structure is also proved to be gauge-equivalent to the spin-connection of S^{p-1}. Finally, by extending formally the fundamental equations for M^n to infinite dimensional case, the present formalism is applied to the field theory that admits a soliton solution. The resultant expression is in some respects different from that of Gervais and Jevicki.Comment: 52 pages, PHYZZX. To be published in Int. J. Mod. Phys.

    A method for cell type marker discovery by high-throughput gene expression analysis of mixed cell populations

    Get PDF
    BACKGROUND: Gene transcripts specifically expressed in a particular cell type (cell-type specific gene markers) are useful for its detection and isolation from a tissue or other cell mixtures. However, finding informative marker genes can be problematic when working with a poorly characterized cell type, as markers can only be unequivocally determined once the cell type has been isolated. We propose a method that could identify marker genes of an uncharacterized cell type within a mixed cell population, provided that the proportion of the cell type of interest in the mixture can be estimated by some indirect method, such as a functional assay. RESULTS: We show that cell-type specific gene markers can be identified from the global gene expression of several cell mixtures that contain the cell type of interest in a known proportion by their high correlation to the concentration of the corresponding cell type across the mixtures. CONCLUSIONS: Genes detected using this high-throughput strategy would be candidate markers that may be useful in detecting or purifying a cell type from a particular biological context. We present an experimental proof-of-concept of this method using cell mixtures of various well-characterized hematopoietic cell types, and we evaluate the performance of the method in a benchmark that explores the requirements and range of validity of the approach

    Determinants of Endogenous Fibrinolysis in Whole Blood Under High Shear in Patients With Myocardial Infarction

    Get PDF
    This work was supported in part by a grant from Alpha MD, London, United Kingdom. Dr Mutch was supported by the British Heart Foundation PG/15/82/31721 and Friends of Anchor. Dr Gorog has received institutional research grants from Bayer, Medtronic, Alpha MD, and Boehringer Ingelheim; has received speaker’s fees from AstraZeneca and Boehringer Ingelheim; and is related through family to a company director in Thromboquest Ltd, but neither she, nor her spouse or children, have financial involvement or equity interest in and they have received no financial assistance, support, or grants from the aforementioned. All other authors have reported that they have no relationships relevant to the contents of this paper to disclose.Peer reviewedPublisher PD

    Advancing Team Cohesion: Using an Escape Room as a Novel Approach

    Get PDF
    Objective: An escape room was used to study teamwork and its determinants, which have been found to relate to the quality and safety of patient care delivery. This pilot study aimed to explore the value of an escape room as a mechanism for improving cohesion among interdisciplinary healthcare teams. Methods: This research was conducted at a nonprofit medical center in Southern California. All participants who work on a team were invited to participate. Authors employed an interrupted within-subjects design, with two pre- and post- escape room questionnaires related to two facets of group cohesion: (belonging – (PGC-B) and morale (PGC-M)). Participants rated their perceptions of group cohesion before, after, and one-month after the escape room. The main outcome measures included PGC-B/M. Results: Sixty-two teams participated (n 280 participants) of which 31 teams (50%) successfully “escaped” in the allotted 45 minutes. There was a statistically significant difference in PGC between the three time periods, F(4, 254) 24.10, p \u3c .001; Wilks’ K .725; partial g2 .275. Results indicated significantly higher scores for PGC immediately after the escape room and at the one-month follow-up compared to baseline. Conclusions: This work offers insights into the utility of using an escape room as a team building intervention in interprofessional healthcare teams. Considering the modifiability of escape rooms, they may function as valuable team building mechanisms in healthcare. More work is needed to determine how escape rooms compare to more traditional team building curriculums

    Effect of photochemical ageing on the ice nucleation properties of diesel and wood burning particles

    Get PDF
    A measurement campaign (IMBALANCE) conducted in 2009 was aimed at characterizing the physical and chemical properties of freshly emitted and photochemically aged combustion particles emitted from a log wood burner and diesel vehicles: a EURO3 Opel Astra with a diesel oxidation catalyst (DOC) but no particle filter and a EURO2 Volkswagen Transporter TDI Syncro without emission aftertreatment. Ice nucleation experiments in the deposition and condensation freezing modes were conducted with the Portable Ice Nucleation Chamber (PINC) at three nominal temperatures, −30 °C, −35 °C and −40 °C. Freshly emitted diesel particles showed ice formation only at −40 °C in the deposition mode at 137% relative humidity with respect to ice (RH<sub>i</sub>) and 92% relative humidity with respect to water (RH<sub>w</sub>), and photochemical ageing did not play a role in modifying their ice nucleation behaviour. Only one diesel experiment where α-pinene was added for the ageing process, showed an ice nucleation enhancement at −35 °C. Wood burning particles also act as ice nuclei (IN) at −40 °C in the deposition mode at the same conditions as for diesel particles and photochemical ageing also did not alter the ice formation properties of the wood burning particles. Unlike diesel particles, wood burning particles form ice via condensation freezing at −35 °C whereas no ice nucleation was observed at −30 °C. Photochemical ageing did not affect the ice nucleation ability of the diesel and wood burning particles at the three different temperatures investigated but a broader range of temperatures below −40 °C need to be investigated in order to draw an overall conclusion on the effect of photochemical ageing on deposition/condensation ice nucleation across the entire temperature range relevant to cold clouds

    Heterogeneous ice nucleation properties of natural desert dust particles coated with a surrogate of secondary organic aerosol

    Get PDF
    Ice nucleation abilities of surface collected mineral dust particles from the Sahara (SD) and Asia (AD) are investigated for the temperature (T) range 253–233&thinsp;K and for supersaturated relative humidity (RH) conditions in the immersion freezing regime. The dust particles were also coated with a proxy of secondary organic aerosol (SOA) from the dark ozonolysis of α-pinene to better understand the influence of atmospheric coatings on the immersion freezing ability of mineral dust particles. The measurements are conducted on polydisperse particles in the size range 0.01–3&thinsp;µm with three different ice nucleation chambers. Two of the chambers follow the continuous flow diffusion chamber (CFDC) principle (Portable Ice Nucleation Chamber, PINC) and the Colorado State University CFDC (CSU-CFDC), whereas the third was the Aerosol Interactions and Dynamics in the Atmosphere (AIDA) cloud expansion chamber. From observed activated fractions (AFs) and ice nucleation active site (INAS) densities, it is concluded within experimental uncertainties that there is no significant difference between the ice nucleation ability of the particular SD and AD samples examined. A small bias towards higher INAS densities for uncoated versus SOA-coated dusts is found but this is well within the 1σ (66&thinsp;% prediction bands) region of the average fit to the data, which captures 75&thinsp;% of the INAS densities observed in this study. Furthermore, no systematic differences are observed between SOA-coated and uncoated dusts in both SD and AD cases, regardless of coating thickness (3–60&thinsp;nm). The results suggest that any differences observed are within the uncertainty of the measurements or differences in cloud chamber parameters such as size fraction of particles sampled, and residence time, as well as assumptions in using INAS densities to compare polydisperse aerosol measurements which may show variable composition with particle size. Coatings with similar properties to that of the SOA in this work and with coating thickness up to 60&thinsp;nm are not expected to impede or enhance the immersion mode ice nucleation ability of mineral dust particles.</p

    Heterogeneous ice nucleation on dust particles sourced from nine deserts worldwide - Part 1: Immersion freezing

    Get PDF
    Desert dust is one of the most abundant ice nucleating particle types in the atmosphere. Traditionally, clay minerals were assumed to determine the ice nucleation ability of desert dust and constituted the focus of ice nucleation studies over several decades. Recently some feldspar species were identified to be ice active at much higher temperatures than clay minerals, redirecting studies to investigate the contribution of feldspar to ice nucleation on desert dust. However, so far no study has shown the atmospheric relevance of this mineral phase. For this study four dust samples were collected after airborne transport in the troposphere from the Sahara to different locations (Crete, the Peloponnese, Canary Islands, and the Sinai Peninsula). Additionally, 11 dust samples were collected from the surface from nine of the biggest deserts worldwide. The samples were used to study the ice nucleation behavior specific to different desert dusts. Furthermore, we investigated how representative surface-collected dust is for the atmosphere by comparing to the ice nucleation activity of the airborne samples. We used the IMCA-ZINC setup to form droplets on single aerosol particles which were subsequently exposed to temperatures between 233 and 250 K. Dust particles were collected in parallel on filters for offline cold-stage ice nucleation experiments at 253–263 K. To help the interpretation of the ice nucleation experiments the mineralogical composition of the dusts was investigated. We find that a higher ice nucleation activity in a given sample at 253 K can be attributed to the K-feldspar content present in this sample, whereas at temperatures between 238 and 245 K it is attributed to the sum of feldspar and quartz content present. A high clay content, in contrast, is associated with lower ice nucleation activity. This confirms the importance of feldspar above 250 K and the role of quartz and feldspars determining the ice nucleation activities at lower temperatures as found by earlier studies for monomineral dusts. The airborne samples show on average a lower ice nucleation activity than the surface-collected ones. Furthermore, we find that under certain conditions milling can lead to a decrease in the ice nucleation ability of polymineral samples due to the different hardness and cleavage of individual mineral phases causing an increase of minerals with low ice nucleation ability in the atmospherically relevant size fraction. Comparison of our data set to an existing desert dust parameterization confirms its applicability for climate models. Our results suggest that for an improved prediction of the ice nucleation ability of desert dust in the atmosphere, the modeling of emission and atmospheric transport of the feldspar and quartz mineral phases would be key, while other minerals are only of minor importance

    Identifying and addressing conflicting results across multiple discordant systematic reviews on the same question: protocol for a replication study of the Jadad algorithm

    Get PDF
    Introduction An increasing growth of systematic reviews (SRs) presents notable challenges for decision-makers seeking to answer clinical questions. In 1997, an algorithm was created by Jadad to assess discordance in results across SRs on the same question. Our study aims to (1) replicate assessments done in a sample of studies using the Jadad algorithm to determine if the same SR would have been chosen, (2) evaluate the Jadad algorithm in terms of utility, efficiency and comprehensiveness, and (3) describe how authors address discordance in results across multiple SRs. Methods and analysis We will use a database of 1218 overviews (2000-2020) created from a bibliometric study as the basis of our search for studies assessing discordance (called discordant reviews). This bibliometric study searched MEDLINE (Ovid), Epistemonikos and Cochrane Database of Systematic Reviews for overviews. We will include any study using Jadad (1997) or another method to assess discordance. The first 30 studies screened at the full-text stage by two independent reviewers will be included. We will replicate the authors' Jadad assessments. We will compare our outcomes qualitatively and evaluate the differences between our Jadad assessment of discordance and the authors' assessment. Ethics and dissemination No ethics approval was required as no human subjects were involved. In addition to publishing in an open-access journal, we will disseminate evidence summaries through formal and informal conferences, academic websites, and across social media platforms. This is the first study to comprehensively evaluate and replicate Jadad algorithm assessments of discordance across multiple SRs
    corecore