22 research outputs found

    Linking preferred orientations to elastic anisotropy in muderong shale, Australia

    No full text
    The significance of shales for unconventional hydrocarbon reservoirs, nuclear waste repositories, and geologic carbon stor- age has opened new research frontiers in geophysics. Among many of its unique physical properties, elastic anisotropy had long been investigated by experimental and computational ap- proaches. Here, we calculated elastic properties of Cretaceous Muderong Shale from Australia with a self-consistent averaging method based on microstructural information. The volume frac- tion and crystallographic preferred orientation distributions of constituent minerals were based on synchrotron x-ray diffrac- tion experiments. Aspect ratios of minerals and pores, deter- mined from scanning electron microscopy, were introduced in the self-consistent averaging. Our analysis suggested that phyllosilicates (i.e., illite-mica, illite-smectite, kaolinite, and chlorite) were dominant with ~70 vol:%. The shape of clay platelets displayed an average aspect ratio of 0.05. These plate- lets were aligned parallel to the bedding plane with a high degree of preferred orientation. The estimated porosity at am- bient pressure was ~17 vol:% and was divided into equiaxial pores and flat pores with an average aspect ratio of 0.01. Our model gave results that compared satisfactorily with values derived from ultrasonic velocity measurements, confirming the validity and reliability of our approximations and averaging approach

    On the evolution of the elastic properties of organic-rich shale upon pyrolysis-induced thermal maturation

    No full text
    The evolution of the elastic properties of organic-rich shale as a function of thermal maturity remains poorly constrained. This understanding is pivotal to the characterization of source rocks and unconventional reservoirs. To better constrain the evolution of the elastic properties and microstructure of organic- rich shale, we have studied the acoustic velocities and elastic anisotropy of samples from two microstructurally different organic-rich shales before and after pyrolysis-induced thermal maturation. To more physically imitate in situ thermal maturation, we performed the pyrolysis experiments on intact core plugs under applied reservoir-magnitude confining pressures. Iterative characterization of the elastic properties of a clay-rich, laminar Barnett Shale sample documents the development of subparallel to bedding cracks by an increase in velocity sensitivity to pressure perpendicular to the bedding. These cracks, however, are not visible through time-lapse scanning electron microscope imaging, indicating either submicrometer crack apertures or predominant development within the core of the sample. At elevated confining pressures, in the absence of pore pressure, these induced cracks close, at which point, the sample is acoustically indistinguishable from the prepyrolysis sample. Conversely, a micritic Green River sample does not exhibit the formation of aligned compliant features. Rather, the sample exhibits a largely directionally independent decrease in velocity as load-bearing, pore-filling kerogen is removed from the sample. Due to the weak alignment of minerals, there is comparatively little intrinsic anisotropy; further, due to the relatively directionally independent evolution of velocity, the evolution of the anisotropy as a function of thermal maturity is not indicative of aligned compliant features. Our results have indicated that horizons of greater thermal maturity may be acoustically detectable in situ through increases in the elastic anisotropy of laminar shales or decreases in the acoustic velocities of nonlaminar shales, micritic rocks, or siltstones

    Orientation relations during the α-ω phase transition of zirconium: in situ texture observations at high pressure and temperature.

    No full text
    Transition metals Ti, Zr, and Hf have a hexagonal close-packed structure (α) at ambient conditions, but undergo phase transformations with increasing temperature and pressure. Of particular significance is the high-pressure hexagonal ω phase which is brittle compared to the α phase. There has been a long debate about transformation mechanisms and orientation relations between the two crystal structures. Here we present the first high pressure experiments with in situ synchrotron x-ray diffraction texture studies on polycrystalline aggregates. We follow crystal orientation changes in Zr, confirming the original suggestion by Silcock for an α→ω martensitic transition for Ti, with (0001)(α)||(1120)(ω), and a remarkable orientation memory when ω reverts back to α

    Origin and behaviour of clay minerals in the Bogd fault gouge, Mongolia

    No full text
    International audienceWe analyzed twelve fault gouge samples from the Bogd fault in south-western Mongolia to understand the origin and behavior of clay minerals. The investigation relies on x-ray powder diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and high energy synchrotron x-ray diffraction methods to investigate microstructure and preferred orientation. Smectite (montmorillonite), illite-smectite mixed layers, illite-mica and kaolinite are the major clay components, in addition to quartz and feldspars, which are present in all samples. The observations suggest that the protoliths and the fault rocks were highly altered by fluids. The fluid-rock interactions allow clay minerals to form, as well as alter feldspars to precipitate kaolinite and montmorillonite. Thus, newly formed clay minerals are heterogeneously distributed in the fault zone. The decrease of montmorillonite component of some of the highly deformed samples also suggests that dehydration processes during deformation were leading to illite precipitation. Based on synchrotron x-ray diffraction data, the degree of preferred orientation of constituent clay minerals is weak, with maxima for (001) ranging from 1.3 to 2.6 multiples of a random distribution (m.r.d). Co-existing quartz and feldspars have random orientation distributions. Microstructure and texture observations of the gouges from the foliated microscopic zone, alternating with micrometric isotropic clay-rich area, also indicate that the Bogd fault experienced brittle and ductile deformation episodes. The clay minerals may contribute to a slip weakening behavior of the fault
    corecore