CORE
🇺🇦
make metadata, not war
Services
Research
Services overview
Explore all CORE services
Access to raw data
API
Dataset
FastSync
Content discovery
Recommender
Discovery
OAI identifiers
OAI Resolver
Managing content
Dashboard
Bespoke contracts
Consultancy services
Support us
Support us
Membership
Sponsorship
Community governance
Advisory Board
Board of supporters
Research network
About
About us
Our mission
Team
Blog
FAQs
Contact us
Elastic anisotropy modeling of Kimmeridge shale
Authors
W Kanitpanyacharoen
S Matthies
+3 more
RN Vasin
HR Wenk
R Wirth
Publication date
1 August 2013
Publisher
eScholarship, University of California
Abstract
Anisotropy of elastic properties in clay-rich sedimentary rocks has been of long-standing interest. These rocks are cap rocks of oil and gas reservoirs, as well as seals for carbon sequestration. Elasticity of shales has been approached by direct velocity measurements and by models based on microstructures. Here we are revisiting the classical Kimmeridge shale studied by Hornby (1998) by first quantifying microstructural features such as phase volume fractions, grain shapes and grain orientations, and pore distributions with advanced analytical methods and then using this information in different models to explain bulk elastic properties. It is shown that by application of a self-consistent algorithm based on Eshelby's (1957) model of inclusions in a homogeneous medium, it is possible to explain most experimental elastic constants, though some discrepancies remain which may be due to the interpretation of experimental data. Using a differential effective medium approach, an almost perfect agreement with experimental stiffness coefficients can be obtained, though the physical basis of this method may be questionable. The influence of single crystal elastic properties, grain shapes, preferred orientation, and volume and shapes of pores on elastic properties of shale is explored. © 2013. American Geophysical Union. All Rights Reserved
Similar works
Full text
Available Versions
Sustaining member
eScholarship - University of California
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:escholarship.org:ark:/1303...
Last time updated on 25/12/2021