159 research outputs found

    Parabiosis and single-cell RNA sequencing reveal a limited contribution of monocytes to myofibroblasts in kidney fibrosis

    Get PDF
    Fibrosis is the common final pathway of virtually all chronic injury to the kidney. While it is well accepted that myofibroblasts are the scar-producing cells in the kidney, their cellular origin is still hotly debated. The relative contribution of proximal tubular epithelium and circulating cells, including mesenchymal stem cells, macrophages, and fibrocytes, to the myofibroblast pool remains highly controversial. Using inducible genetic fate tracing of proximal tubular epithelium, we confirm that the proximal tubule does not contribute to the myofibroblast pool. However, in parabiosis models in which one parabiont is genetically labeled and the other is unlabeled and undergoes kidney fibrosis, we demonstrate that a small fraction of genetically labeled renal myofibroblasts derive from the circulation. Single-cell RNA sequencing confirms this finding but indicates that these cells are circulating monocytes, express few extracellular matrix or other myofibroblast genes, and express many proinflammatory cytokines. We conclude that this small circulating myofibroblast progenitor population contributes to renal fibrosis by paracrine rather than direct mechanisms

    Myogenic progenitors contribute to open but not closed fracture repair

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Bone repair is dependent on the presence of osteocompetent progenitors that are able to differentiate and generate new bone. Muscle is found in close association with orthopaedic injury, however its capacity to make a cellular contribution to bone repair remains ambiguous. We hypothesized that myogenic cells of the MyoD-lineage are able to contribute to bone repair.</p> <p>Methods</p> <p>We employed a <it>MyoD</it>-Cre<sup>+</sup>:Z/AP<sup>+ </sup>conditional reporter mouse in which all cells of the MyoD-lineage are permanently labeled with a <it>human alkaline phosphatase (hAP) </it>reporter. We tracked the contribution of MyoD-lineage cells in mouse models of tibial bone healing.</p> <p>Results</p> <p>In the absence of musculoskeletal trauma, MyoD-expressing cells are limited to skeletal muscle and the presence of reporter-positive cells in non-muscle tissues is negligible. In a closed tibial fracture model, there was no significant contribution of hAP<sup>+ </sup>cells to the healing callus. In contrast, open tibial fractures featuring periosteal stripping and muscle fenestration had up to 50% of hAP<sup>+ </sup>cells detected in the open fracture callus. At early stages of repair, many hAP<sup>+ </sup>cells exhibited a chondrocyte morphology, with lesser numbers of osteoblast-like hAP<sup>+ </sup>cells present at the later stages. Serial sections stained for hAP and type II and type I collagen showed that MyoD-lineage cells were surrounded by cartilaginous or bony matrix, suggestive of a functional role in the repair process. To exclude the prospect that osteoprogenitors spontaneously express MyoD during bone repair, we created a metaphyseal drill hole defect in the tibia. No hAP<sup>+ </sup>staining was observed in this model suggesting that the expression of MyoD is not a normal event for endogenous osteoprogenitors.</p> <p>Conclusions</p> <p>These data document for the first time that muscle cells can play a significant secondary role in bone repair and this knowledge may lead to important translational applications in orthopaedic surgery.</p> <p>Please see related article: <url>http://www.biomedcentral.com/1741-7015/9/136</url></p

    Specialized fibroblast differentiated states underlie scar formation in the infarcted mouse heart

    Get PDF
    Β© 2018 Academic Press. All rights reserved. Fibroblasts are a dynamic cell type that achieve selective differentiated states to mediate acute wound healing and long-term tissue remodeling with scarring. With myocardial infarction injury, cardiomyocytes are replaced by secreted extracellular matrix proteins produced by proliferating and differentiating fibroblasts. Here, we employed 3 different mouse lineage-tracing models and stage-specific gene profiling to phenotypically analyze and classify resident cardiac fibroblast dynamics during myocardial infarction injury and stable scar formation. Fibroblasts were activated and highly proliferative, reaching a maximum rate within 2 to 4 days after infarction injury, at which point they expanded 3.5-fold and were maintained long term. By 3 to 7 days, these cells differentiated into myofibroblasts that secreted abundant extracellular matrix proteins and expressed smooth muscle Ξ±-actin to structurally support the necrotic area. By 7 to 10 days, myofibroblasts lost proliferative ability and smooth muscle Ξ±-actin expression as the collagen-containing extracellular matrix and scar fully matured. However, these same lineage-traced initial fibroblasts persisted within the scar, achieving a new molecular and stable differentiated state referred to as a matrifibrocyte, which was also observed in the scars of human hearts. These cells express common and unique extracellular matrix and tendon genes that are more specialized to support the mature scar

    Cardiac fibrosis can be attenuated by blocking the activity of transglutaminase 2 using a selective small-molecule inhibitor

    Get PDF
    Cardiac fibrosis is implicit in all forms of heart disease but there are no effective treatments. In this report, we investigate the role of the multi-functional enzyme Transglutaminase 2 (TG2) in cardiac fibrosis and assess its potential as a therapeutic target. Here we describe the use a highly selective TG2 small-molecule inhibitor to test the efficacy of TG2 inhibition as an anti-fibrotic therapy for heart failure employing two different in vivo models of cardiac fibrosis: Progressively induced interstitial cardiac fibrosis by pressure overload using angiotensin II infusion: Acutely induced focal cardiac fibrosis through myocardial infarction by ligation of the left anterior descending coronary artery (AMI model). In the AMI model, in vivo MRI showed that the TG2 inhibitor 1–155 significantly reduced infarct size by over 50% and reduced post-infarct remodelling at 20 days post insult. In both models, Sirius red staining for collagen deposition and levels of the TG2-mediated protein crosslink Ξ΅(Ξ³-glutamyl)lysine were significantly reduced. No cardiac rupture or obvious signs of toxicity were observed. To provide a molecular mechanism for TG2 involvement in cardiac fibrosis, we show that both TGFΞ²1-induced transition of cardiofibroblasts into myofibroblast-like cells and TGFΞ²1- induced EndMT, together with matrix deposition, can be attenuated by the TG2 selective inhibitor 1–155, suggesting a new role for TG2 in regulating TGFΞ²1 signalling in addition to its role in latent TGFΞ²1 activation. In conclusion, TG2 has a role in cardiac fibrosis through activation of myofibroblasts and matrix deposition. TG2 inhibition using a selective small-molecule inhibitor can attenuate cardiac fibrosis

    Muscle-Bound Primordial Stem Cells Give Rise to Myofiber-Associated Myogenic and Non-Myogenic Progenitors

    Get PDF
    Myofiber cultures give rise to myogenic as well as to non-myogenic cells. Whether these myofiber-associated non-myogenic cells develop from resident stem cells that possess mesenchymal plasticity or from other stem cells such as mesenchymal stem cells (MSCs) remain unsolved. To address this question, we applied a method for reconstructing cell lineage trees from somatic mutations to MSCs and myogenic and non-myogenic cells from individual myofibers that were cultured at clonal density

    Interplay of Nkx3.2, Sox9 and Pax3 Regulates Chondrogenic Differentiation of Muscle Progenitor Cells

    Get PDF
    Muscle satellite cells make up a stem cell population that is capable of differentiating into myocytes and contributing to muscle regeneration upon injury. In this work we investigate the mechanism by which these muscle progenitor cells adopt an alternative cell fate, the cartilage fate. We show that chick muscle satellite cells that normally would undergo myogenesis can be converted to express cartilage matrix proteins in vitro when cultured in chondrogenic medium containing TGFß3 or BMP2. In the meantime, the myogenic program is repressed, suggesting that muscle satellite cells have undergone chondrogenic differentiation. Furthermore, ectopic expression of the myogenic factor Pax3 prevents chondrogenesis in these cells, while chondrogenic factors Nkx3.2 and Sox9 act downstream of TGFß or BMP2 to promote this cell fate transition. We found that Nkx3.2 and Sox9 repress the activity of the Pax3 promoter and that Nkx3.2 acts as a transcriptional repressor in this process. Importantly, a reverse function mutant of Nkx3.2 blocks the ability of Sox9 to both inhibit myogenesis and induce chondrogenesis, suggesting that Nkx3.2 is required for Sox9 to promote chondrogenic differentiation in satellite cells. Finally, we found that in an in vivo mouse model of fracture healing where muscle progenitor cells were lineage-traced, Nkx3.2 and Sox9 are significantly upregulated while Pax3 is significantly downregulated in the muscle progenitor cells that give rise to chondrocytes during fracture repair. Thus our in vitro and in vivo analyses suggest that the balance of Pax3, Nkx3.2 and Sox9 may act as a molecular switch during the chondrogenic differentiation of muscle progenitor cells, which may be important for fracture healing

    The interstitium in cardiac repair: role of the immune-stromal cell interplay

    Get PDF
    Cardiac regeneration, that is, restoration of the original structure and function in a damaged heart, differs from tissue repair, in which collagen deposition and scar formation often lead to functional impairment. In both scenarios, the early-onset inflammatory response is essential to clear damaged cardiac cells and initiate organ repair, but the quality and extent of the immune response vary. Immune cells embedded in the damaged heart tissue sense and modulate inflammation through a dynamic interplay with stromal cells in the cardiac interstitium, which either leads to recapitulation of cardiac morphology by rebuilding functional scaffolds to support muscle regrowth in regenerative organisms or fails to resolve the inflammatory response and produces fibrotic scar tissue in adult mammals. Current investigation into the mechanistic basis of homeostasis and restoration of cardiac function has increasingly shifted focus away from stem cell-mediated cardiac repair towards a dynamic interplay of cells composing the less-studied interstitial compartment of the heart, offering unexpected insights into the immunoregulatory functions of cardiac interstitial components and the complex network of cell interactions that must be considered for clinical intervention in heart diseases

    Skeletal Muscle Satellite Cells Have a MyoD-Positive Developmental Origin and Activated MyoD-Positive Satellite Cells Maintain Their Self-renewal Capacity during Adult Muscle Regeneration

    No full text
    Skeletal muscle satellite cells (SCs) are tissue-specific adult stem cells responsible for muscle growth and regeneration. The lack of specific markers for progenitors of SCs during their early embryonic development made it impossible to determine SCs\u27 developmental origin. Here, we have developed the MyoDiCre knock-in mouse line and used the Cre/lox lineage analysis to determine whether satellite cell progenitors express MyoD, a marker of myogenic commitment. An extensive survey of hind limb, intercostal, diaphragm, and extraocular muscle in adult and neonatal mice showed that almost all SCs were labeled and derived from MyoD-positive committed myogenic progenitors. ^ Previously, the absence of a permanent and specific labeling method of activated adult SC in vivo resulted in controversies regarding the mechanisms of renewal of SCs upon muscle injury. To address this issue, we developed the MyoDCreER knock-in mouse line, a ligand-dependent inducible Cre-expressing mouse, to control the timing of recombination of MyoD-positive cells and investigate whether activated MyoD-positive SC progeny can transition back to become quiescent SCs in the regenerated muscle. Using this method, recombined SCs were found to reoccupy the SC niche after regeneration is complete, which revealed a possible mechanism for SC repopulations and maintenance by self-renewal in spite of MyoD expression. Furthermore, with stage-specific induction, we demonstrated that self-renewal occurs within two days after injury, suggesting a rapid down regulation of MyoD expression to prevent terminal myogenic differentiation due to MyoD expression. ^ In conclusion, these findings bring new insight to the role of MyoD. We demonstrated that transient MyoD expression during embryonic development commits SC precursors to the myogenic fate. We also showed that transient MyoD expression in activated SCs does not necessarily result in terminal differentiation, but can be reversed or suppressed, and activated MyoD-positive SCs can self-renewal.
    • …
    corecore