1,853 research outputs found

    Facile synthesis of nitrogen-doped graphene via low-temperature pyrolysis: The effects of precursors and annealing ambience on metal-free catalytic oxidation

    Get PDF
    A green and facile protocol of thermal treatment of graphene oxide (GO) with urea was adopted to synthesize nitrogen-doped graphene (NG-Urea-air) at a low temperature (350 °C) in the static air. The resulting sample exhibited outstanding catalytic performance to activate peroxymonosulfate (PMS) toward organic degradation. The NG-Urea-air induced 49.7- and 11.5-fold enhancement over GO and pristine reduced graphene oxide (rGO-air). Moreover, the influences of nitrogen precursors including organic chemicals (urea, cyanamide, and melamine) and inorganic salts (ammonium nitrate and ammonium chloride) were investigated, and urea was demonstrated to be the best precursor for synthesizing N-doped graphene with a relative high doping level (18.7 at.%). The classical radical quenching and advanced in situ electron paramagnetic resonance (EPR) technology revealed that the outstanding oxidative effectiveness of PMS/NG-Urea-air system was originated from the nonradical oxidation pathway, in which PMS was activated by the positively charged carbon domains next to nitrogen atoms and the phenol was oxidized simultaneously on the carbon network via rapid charge transfer. Meanwhile, singlet oxygen and radicals may also partially contribute to the complete phenol degradation. This study facilitates a fundamental investigation of heteroatom doping progress during thermal treatment and sheds light on the insights into carbocatalysis in environmental remediation

    Drought-induced site-specific DNA methylation and its association with drought tolerance in rice (Oryza sativa L.)

    Get PDF
    An indica pyramiding line, DK151, and its recurrent parent, IR64, were evaluated under drought stress and non-stress conditions for three consecutive seasons. DK151 showed significantly improved tolerance to drought. The DNA methylation changes in DK151 and IR64 under drought stress and subsequent recovery were assessed using methylation-sensitive amplified polymorphism analysis. Our results indicate that drought-induced genome-wide DNA methylation changes accounted for ∼12.1% of the total site-specific methylation differences in the rice genome. This drought-induced DNA methylation pattern showed three interesting properties. The most important one was its genotypic specificity reflected by large differences in the detected DNA methylation/demethylation sites between DK151 and IR64, which result from introgressed genomic fragments in DK151. Second, most drought-induced methylation/demethylation sites were of two major types distinguished by their reversibility, including 70% of the sites at which drought-induced epigenetic changes were reversed to their original status after recovery, and 29% of sites at which the drought-induced DNA demethylation/methylation changes remain even after recovery. Third, the drought-induced DNA methylation alteration showed a significant level of developmental and tissue specificity. Together, these properties are expected to have contributed greatly to rice response and adaptation to drought stress. Thus, induced epigenetic changes in rice genome can be considered as a very important regulatory mechanism for rice plants to adapt to drought and possibly other environmental stresses

    Suppress HBV by therapeutic vaccine

    Get PDF
    乙肝预防性疫苗显著减少了乙肝新发感染,但目前全球仍有约2.5亿慢性乙肝感染者,若未得到有效治疗,可能发展为肝癌、肝硬化等终末期肝病并导致死亡。夏宁邵教授团队研究发展了一种新型的B细胞表位嵌合型类病毒颗粒乙肝治疗性疫苗(治疗性蛋白),在多种模型中证实了其对慢性乙肝感染的治疗潜力,为研发治疗慢性乙肝的原创药物提供了新思路。 我校博士后张天英、博士生郭雪染和博士生巫洋涛为该论文共同第一作者,夏宁邵教授、袁权副教授、张军教授为该论文的共同通讯作者。【Abstract】Objective: This study aimed to develop a novel therapeutic vaccine based on a unique B cell epitope and investigate its therapeutic potential against chronic hepatitis B (CHB) in animal models. Methods: A series of peptides and carrier proteins were evaluated in HBV-tolerant mice to obtain an optimized therapeutic molecule. The immunogenicity,therapeutic efficacy and mechanism of the candidate were investigated systematically. Results: Among the HBsAg-aa119-125-containing peptides evaluated in this study, HBsAg-aa113-135 (SEQ13) exhibited the most striking therapeutic effects. A novel immuno-enhanced virus-like particle carrier (CR-T3) derived from the roundleaf bat HBV core antigen (RBHBcAg) was created and used to display SEQ13, forming candidate molecule CR-T3-SEQ13. Multiple copies of SEQ13 displayed on the surface of this particulate antigen promote the induction of a potent anti-HBs antibody response in mice, rabbits and cynomolgus monkeys. Sera and purified polyclonal IgG from the immunized animals neutralized HBV infection in vitro and mediated efficient HBV/HBsAg clearance in the mice. CR-T3-SEQ13-based vaccination induced long-term suppression of HBsAg and HBV DNA in HBV transgenic mice and eradicated the virus completely in hydrodynamic-based HBV carrier mice. The suppressive effects on HBsAg were strongly correlated with the anti-HBs level after vaccination, suggesting that the main mechanism of CR-T3-SEQ13 vaccination therapy was the induction of a SEQ13-specific antibody response that mediated HBV/HBsAg clearance. Conclusions: The novel particulate protein CR-T3-SEQ13 suppressed HBsAg effectively through induction of a humoral immune response in HBV-tolerant mice. This B cell epitope-based therapeutic vaccine may provide a novel immunotherapeutic agent against chronic HBV infection in humans.This work was supported by the National Scientific and Technological Major project (2017ZX10202203-001), the National Natural Science Foundation of China (31730029, 81672023, 81871316 and 81702006) and the Xiamen University President Fund Project (20720160063). 该研究获得了“艾滋病和病毒性肝炎等重大传染病防治”科技重大专项、国家自然科学基金等资助

    Chiral symmetry breaking by chemically manipulating statistical fluctuation in crystallization

    Get PDF
    通讯作者地址: Long, LS (通讯作者), Xiamen Univ, Coll Chem & Chem Engn, Dept Chem, State Key Lab Phys Chem Solid Surface, Xiamen 361005, Peoples R China 地址: 1. Xiamen Univ, Coll Chem & Chem Engn, Dept Chem, State Key Lab Phys Chem Solid Surface, Xiamen 361005, Peoples R China 电子邮件地址: [email protected], [email protected]

    Evidence of a resonant structure in the e+eπ+D0De^+e^-\to \pi^+D^0D^{*-} cross section between 4.05 and 4.60 GeV

    Get PDF
    The cross section of the process e+eπ+D0De^+e^-\to \pi^+D^0D^{*-} for center-of-mass energies from 4.05 to 4.60~GeV is measured precisely using data samples collected with the BESIII detector operating at the BEPCII storage ring. Two enhancements are clearly visible in the cross section around 4.23 and 4.40~GeV. Using several models to describe the dressed cross section yields stable parameters for the first enhancement, which has a mass of 4228.6 \pm 4.1 \pm 6.3 \un{MeV}/c^2 and a width of 77.0 \pm 6.8 \pm 6.3 \un{MeV}, where the first uncertainties are statistical and the second ones are systematic. Our resonant mass is consistent with previous observations of the Y(4220)Y(4220) state and the theoretical prediction of a DDˉ1(2420)D\bar{D}_1(2420) molecule. This result is the first observation of Y(4220)Y(4220) associated with an open-charm final state. Fits with three resonance functions with additional Y(4260)Y(4260), Y(4320)Y(4320), Y(4360)Y(4360), ψ(4415)\psi(4415), or a new resonance, do not show significant contributions from either of these resonances. The second enhancement is not from a single known resonance. It could contain contributions from ψ(4415)\psi(4415) and other resonances, and a detailed amplitude analysis is required to better understand this enhancement
    corecore