586 research outputs found

    Predicting leptonic CP violation in the light of Daya Bay result

    Full text link
    In the light of the recent Daya Bay result the reactor angle is about 9 degrees, we reconsider the model presented in arXiv:1005.3482 showing that, when all neutrino oscillation parameters are taken at their best fit values of Schwetz et al and the reactor angle to be the central value of Daya Bay, the predicted value of the CP phase is approximately 45 degrees.Comment: 4 pages, 2 figures, update of arXiv:1005.348

    Screening of Dirac flavor structure in the seesaw and neutrino mixing

    Full text link
    We consider the mechanism of screening of the Dirac flavor structure in the context of the double seesaw mechanism. As a consequence of screening, the structure of the light neutrino mass matrix, m_\nu, is determined essentially by the structure of the (Majorana) mass matrix, M_S, of new super-heavy (Planck scale) neutral fermions S. We calculate effects of the renormalization group running in order to investigate the stability of the screening mechanism with respect to radiative corrections. We find that screening is stable in the supersymmetric case, whereas in the standard model it is unstable for certain structures of M_S. The screening mechanism allows us to reconcile the (approximate) quark-lepton symmetry and the strong difference of the mixing patterns in the quark and lepton sectors. It opens new possibilities to explain a quasi-degenerate neutrino mass spectrum, special ``neutrino'' symmetries and quark-lepton complementarity. Screening can emerge from certain flavor symmetries or Grand Unification.Comment: 27 pages, 3 figures; references added, discussion of the E6 model modifie

    Adsorption of Reactive Particles on a Random Catalytic Chain: An Exact Solution

    Full text link
    We study equilibrium properties of a catalytically-activated annihilation A+A→0A + A \to 0 reaction taking place on a one-dimensional chain of length NN (N→∞N \to \infty) in which some segments (placed at random, with mean concentration pp) possess special, catalytic properties. Annihilation reaction takes place, as soon as any two AA particles land onto two vacant sites at the extremities of the catalytic segment, or when any AA particle lands onto a vacant site on a catalytic segment while the site at the other extremity of this segment is already occupied by another AA particle. Non-catalytic segments are inert with respect to reaction and here two adsorbed AA particles harmlessly coexist. For both "annealed" and "quenched" disorder in placement of the catalytic segments, we calculate exactly the disorder-average pressure per site. Explicit asymptotic formulae for the particle mean density and the compressibility are also presented.Comment: AMSTeX, 27 pages + 4 figure

    Characterization of a novel 4.0-kb y-type HMW-GS from Eremopyrum distans

    Get PDF
    A novel 4.0-kb Fy was sequenced and bacterially expressed. This gene, the largest y-type HMW-GS currently reported, is 4,032-bp long and encodes a mature protein with 1,321 amino acid (AA) residues. The 4.0-kb Fy shows novel modifications in all domains. In the N-terminal, it contains only 67 AA residues, as three short peptides are absent. In the repetitive domain, the undecapeptide RYYPSVTSPQQ is completely lost and the dodecapeptide GSYYPGQTSPQQ is partially absent. A novel motif unit, PGQQ, is present in addition to the two standard motif units PGQGQQ and GYYPTSPQQ. Besides, an extra cysteine residue also occurs in the middle of this domain. The large molecular mass of the 4.0-kb Fy is mainly due to the presence of an extra-long repetitive domain with 1,279 AA residues. The novel 4.0-kb Fy gene is of interest in HMW-GS gene evolution as well as to wheat quality improvement with regard to its longest repetitive domain length and extra cysteines residues

    Fuel cycle modelling of open cycle thorium-fuelled nuclear energy systems

    Get PDF
    In this study, we have sought to determine the advantages, disadvantages, and viability of open cycle thorium–uranium-fuelled (Th–U-fuelled) nuclear energy systems. This has been done by assessing three such systems, each of which requires uranium enriched to ∌20% 235U, in comparison to a reference uranium-fuelled (U-fuelled) system over various performance indicators, spanning material flows, waste composition, economics, and proliferation resistance. The values of these indicators were determined using the UK National Nuclear Laboratory’s fuel cycle modelling code ORION. This code required the results of lattice-physics calculations to model the neutronics of each nuclear energy system, and these were obtained using various nuclear reactor physics codes and burn-up routines. In summary, all three Th–U-fuelled nuclear energy systems required more separative work capacity than the equivalent benchmark U-fuelled system, with larger levelised fuel cycle costs and larger levelised cost of electricity. Although a reduction of ∌6% in the required uranium ore per kWh was seen for one of the Th–U-fuelled systems compared to the reference U-fuelled system, the other two Th–U-fuelled systems required more uranium ore per kWh than the reference. Negligible advantages and disadvantages were observed for the amount and the properties of the spent nuclear fuel (SNF) generated by the systems considered. Two of the Th–U-fuelled systems showed some benefit in terms of proliferation resistance of the SNF generated. Overall, it appears that there is little merit in incorporating thorium into nuclear energy systems operating with open nuclear fuel cycles

    Neutral Higgs bosons in the MNMSSM with explicit CP violation

    Full text link
    Within the framework of the minimal non-minimal supersymmetric standard model (MNMSSM) with tadpole terms, CP violation effects in the Higgs sector are investigated at the one-loop level, where the radiative corrections from the loops of the quark and squarks of the third generation are taken into account. Assuming that the squark masses are not degenerate, the radiative corrections due to the stop and sbottom quarks give rise to CP phases, which trigger the CP violation explicitly in the Higgs sector of the MNMSSM. The masses, the branching ratios for dominant decay channels, and the total decay widths of the five neutral Higgs bosons in the MNMSSM are calculated in the presence of the explicit CP violation. The dependence of these quantities on the CP phases is quite recognizable, for given parameter values.Comment: 25 pages, 8 figure

    Leptogenesis and Neutrino Oscillations Within A Predictive G(224)/SO(10)-Framework

    Full text link
    A framework based on an effective symmetry that is either G(224)= SU(2)_L x SU(2)_R xSU(4)^c or SO(10) has been proposed (a few years ago) that successfully describes the masses and mixings of all fermions including neutrinos, with seven predictions, in good accord with the data. Baryogenesis via leptogenesis is considered within this framework by allowing for natural phases (~ 1/20-1/2) in the entries of the Dirac and Majorana mass-matrices. It is shown that the framework leads quite naturally, for both thermal as well as non-thermal leptogenesis, to the desired magnitude for the baryon asymmetry. This result is obtained in full accord with the observed features of the atmospheric and solar neutrino oscillations, as well as with those of the quark and charged lepton masses and mixings, and the gravitino-constraint. Hereby one obtains a unified description of fermion masses, neutrino oscillations and baryogenesis (via leptogenesis) within a single predictive framework.Comment: Efficiency factor updated, some clarifications and new references added. 19 page

    Trans-Planckian Effects in Inflationary Cosmology and the Modified Uncertainty Principle

    Full text link
    There are good indications that fundamental physics gives rise to a modified space-momentum uncertainty relation that implies the existence of a minimum length scale. We implement this idea in the scalar field theory that describes density perturbations in flat Robertson-Walker space-time. This leads to a non-linear time-dependent dispersion relation that encodes the effects of Planck scale physics in the inflationary epoch. Unruh type dispersion relations naturally emerge in this approach, while unbounded ones are excluded by the minimum length principle. We also find red-shift induced modifications of the field theory, due to the reduction of degrees of freedom at high energies, that tend to dampen the fluctuations at trans-Planckian momenta. In the specific example considered, this feature helps determine the initial state of the fluctuations, leading to a flat power spectrum.Comment: LaTeX, 26 pages, 3 eps figures; (V2) Expanded version: added section 2.1, comments and references; more detailed derivation in section 4.
    • 

    corecore