2,813 research outputs found

    Rolling contact fatigue in martensitic 100Cr6: Subsurface hardening and crack formation

    Get PDF
    Rolling contact fatigue tests on 100Cr6 steel were carried out with a ball-on-rod tester. Microstructural damage was manifested by gradual hardness changes under the subsurface, and microcracks formed adjacent to inclusions; both being evidence of plastic deformation. The hardness increase appears to be due to the development of residual stress, while the microcracks form as a result of the concentration of stress around inclusions. The microcrack orientation is suggested to be affected by the stress state, depending on the degree of residual stresses generated. The residual stress development may be a key factor for optimising the bearing element testing methods, by considering its influence on the damage morphology.This work was supported by SKF Engineering & Research Centre and financed by SKF AB.NOTICE: this is the author’s version of a work that was accepted for publication in Materials Science and Engineering: A. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Materials Science and Engineering: A, Volume 607, 23 June 2014, Pages 328–333. DOI: http://dx.doi.org/10.1016/j.msea.2014.03.143. http://www.sciencedirect.com/science/article/pii/S0921509314004365

    Assessing 3D tunnel position in ACL reconstruction using a novel single image 3D-2D registration

    Get PDF
    Poster Session: 2D/3D and FluoroscopyConference Theme: Image-Guided Procedures, Robotic Interventions, and ModelingThe routinely used procedure for evaluating tunnel positions following anterior cruciate ligament (ACL) reconstructions based on standard X-ray images is known to pose difficulties in terms of obtaining accurate measures, especially in providing three-dimensional tunnel positions. This is largely due to the variability in individual knee joint pose relative to X-ray plates. Accurate results were reported using postoperative CT. However, its extensive usage in clinical routine is hampered by its major requirement of having CT scans of individual patients, which is not available for most ACL reconstructions. These difficulties are addressed through the proposed method, which aligns a knee model to X-ray images using our novel single-image 3D-2D registration method and then estimates the 3D tunnel position. In the proposed method, the alignment is achieved by using a novel contour-based 3D-2D registration method wherein image contours are treated as a set of oriented points. However, instead of using some form of orientation weighting function and multiplying it with a distance function, we formulate the 3D-2D registration as a probability density estimation using a mixture of von Mises-Fisher- Gaussian (vMFG) distributions and solve it through an expectation maximization (EM) algorithm. Compared with the ground-truth established from postoperative CT, our registration method in an experiment using a plastic phantom showed accurate results with errors of (-0.43°±1.19°, 0.45°±2.17°, 0.23°±1.05°) and (0.03±0.55, -0.03±0.54, -2.73±1.64) mm. As for the entry point of the ACL tunnel, one of the key measurements, it was obtained with high accuracy of 0.53±0.30 mm distance errors. © 2012 Copyright Society of Photo-Optical Instrumentation Engineers (SPIE).published_or_final_versionSPIE Medical Imaging 2012, San Diego, CA., 4-9 February 2012. In Progress in Biomedical Optics and Imaging, 2012, v. 8316, art. no. 83162

    Correspondenceless 3D-2D registration based on expectation conditional maximization

    Get PDF
    Cum Laude Poster AwardConference Theme: Visualization, Image-Guided Procedures, and Modeling3D-2D registration is a fundamental task in image guided interventions. Due to the physics of the X-ray imaging, however, traditional point based methods meet new challenges, where the local point features are indistinguishable, creating difficulties in establishing correspondence between 2D image feature points and 3D model points. In this paper, we propose a novel method to accomplish 3D-2D registration without known correspondences. Given a set of 3D and 2D unmatched points, this is achieved by introducing correspondence probabilities that we model as a mixture model. By casting it into the expectation conditional maximization framework, without establishing one-to-one point correspondences, we can iteratively refine the registration parameters. The method has been tested on 100 real X-ray images. The experiments showed that the proposed method accurately estimated the rotations (< 1°) and in-plane (X-Y plane) translations (< 1 mm). © 2011 SPIE.published_or_final_versionThe SPIE Medical Imaging 2011, Lake Buena Vista, FL., 12-17 February 2011. In Progress in Biomedical Optics and Imaging, 2011, v. 7964, art. no. 79642

    Identification of the protein kinases Pyk3 and Phg2 as regulators of the STATc-mediated response to hyperosmolarity

    Get PDF
    Cellular adaptation to changes in environmental osmolarity is crucial for cell survival. In Dictyostelium, STATc is a key regulator of the transcriptional response to hyperosmotic stress. Its phosphorylation and consequent activation is controlled by two signaling branches, one cGMP- and the other Ca(2+)-dependent, of which many signaling components have yet to be identified. The STATc stress signalling pathway feeds back on itself by upregulating the expression of STATc and STATc-regulated genes. Based on microarray studies we chose two tyrosine-kinase like proteins, Pyk3 and Phg2, as possible modulators of STATc phosphorylation and generated single and double knock-out mutants to them. Transcriptional regulation of STATc and STATc dependent genes was disturbed in pyk3(-), phg2(-), and pyk3(-)/phg2(-) cells. The absence of Pyk3 and/or Phg2 resulted in diminished or completely abolished increased transcription of STATc dependent genes in response to sorbitol, 8-Br-cGMP and the Ca(2+) liberator BHQ. Also, phospho-STATc levels were significantly reduced in pyk3(-) and phg2(-) cells and even further decreased in pyk3(-)/phg2(-) cells. The reduced phosphorylation was mirrored by a significant delay in nuclear translocation of GFP-STATc. The protein tyrosine phosphatase 3 (PTP3), which dephosphorylates and inhibits STATc, is inhibited by stress-induced phosphorylation on S448 and S747. Use of phosphoserine specific antibodies showed that Phg2 but not Pyk3 is involved in the phosphorylation of PTP3 on S747. In pull-down assays Phg2 and PTP3 interact directly, suggesting that Phg2 phosphorylates PTP3 on S747 in vivo. Phosphorylation of S448 was unchanged in phg2(-) cells. We show that Phg2 and an, as yet unknown, S448 protein kinase are responsible for PTP3 phosphorylation and hence its inhibition, and that Pyk3 is involved in the regulation of STATc by either directly or indirectly activating it. Our results add further complexities to the regulation of STATc, which presumably ensure its optimal activation in response to different environmental cues

    Magnetic Fluffy Dark Matter

    Full text link
    We explore extensions of inelastic Dark Matter and Magnetic inelastic Dark Matter where the WIMP can scatter to a tower of heavier states. We assume a WIMP mass mχO(1100)m_\chi \sim \mathcal{O}(1-100) GeV and a constant splitting between successive states δO(1100)\delta \sim\mathcal{O}(1 - 100) keV. For the spin-independent scattering scenario we find that the direct experiments CDMS and XENON strongly constrain most of the DAMA/LIBRA preferred parameter space, while for WIMPs that interact with nuclei via their magnetic moment a region of parameter space corresponding to mχ11m_{\chi}\sim 11 GeV and δ<15\delta < 15 keV is allowed by all the present direct detection constraints.Comment: 16 pages, 6 figures, added comments about magnetic moment form factor to Sec 3.1.2 and results to Sec 3.2.2, final version to be published in JHE

    Regulation of Adipose Tissue Stromal Cells Behaviors by Endogenic Oct4 Expression Control

    Get PDF
    BACKGROUND: To clarify the role of the POU domain transcription factor Oct4 in Adipose Tissue Stromal Cells (ATSCs), we investigated the regulation of Oct4 expression and other embryonic genes in fully differentiated cells, in addition to identifying expression at the gene and protein levels. The ATSCs and several immature cells were routinely expressing Oct4 protein before and after differentiating into specific lineages. METHODOLOGY/PRINCIPAL FINDINGS AND CONCLUSIONS: Here, we demonstrated the role of Oct4 in ATSCs on cell proliferation and differentiation. Exogenous Oct4 improves adult ATSCs cell proliferation and differentiation potencies through epigenetic reprogramming of stemness genes such as Oct4, Nanog, Sox2, and Rex1. Oct4 directly or indirectly induces ATSCs reprogramming along with the activation of JAK/STAT3 and ERK1/2. Exogenic Oct4 introduced a transdifferentiation priority into the neural lineage than mesodermal lineage. Global gene expression analysis results showed that Oct4 regulated target genes which could be characterized as differentially regulated genes such as pluripotency markers NANOG, SOX2, and KLF4 and markers of undifferentiated stem cells FOXD1, CDC2, and EPHB1. The negatively regulated genes included FAS, TNFR, COL6A1, JAM2, FOXQ1, FOXO1, NESTIN, SMAD3, SLIT3, DKK1, WNT5A, BMP1, and GLIS3 which are implicated in differentiation processes as well as a number of novel genes. Finally we have demonstrated the therapeutic utility of Oct4/ATSCs were introduced into the mouse traumatic brain, engrafted cells was more effectively induces regeneration activity with high therapeutic modality than that of control ATSCs. Engrafted Oct4/ATSCs efficiently migrated and transdifferentiated into action potential carrying, functionally neurons in the hippocampus and promoting the amelioration of lesion cavities
    corecore