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ABSTRACT

3D-2D registration is a fundamental task in image guided interventions. Due to the physics of
the X-ray imaging, however, traditional point based methods meet new challenges, where the local
point features are indistinguishable, creating difficulties in establishing correspondence between 2D
image feature points and 3D model points. In this paper, we propose a novel method to accomplish
3D-2D registration without known correspondences. Given a set of 3D and 2D unmatched points,
this is achieved by introducing correspondence probabilities that we model as a mixture model. By
casting it into the expectation conditional maximization framework, without establishing one-to-one
point correspondences, we can iteratively refine the registration parameters. The method has been
tested on 100 real X-ray images. The experiments showed that the proposed method accurately
estimated the rotations (< 1◦) and in-plane (X-Y plane) translations (< 1 mm).

Keywords: 3D-2D registration, expectation conditional maximization, mixture of Gaussian.

1. INTRODUCTION

Estimating the registration parameters given a set of 3D object and 2D image feature points is a
well understood problem when the correspondences are given. In the registration methods based
on point-to-point correspondences, the projection error is commonly used in the objective function
that is minimized to estimate the 3D rotation R and translation t. This error measure is generally
defined as the (Euclidean) distance between the feature points detected in the image (landmarks,
edge points, contour points, and/or high dimensional feature points) and the projections of their
counterparts on the 3D model. The procedure of getting 2D projection from 3D model, O ⊂ R

3,
is a nonlinear mapping, T : O �→ Ω, where Ω ⊂ R

2 is the image plane. Specifically, it is a 3D rigid
motion g = [R, t] : R3 �→ R

3,R ∈ SE(3), t ∈ R
3, followed by a perspective projection π : R3 �→ Ω,

i.e. T = π ◦ g. Therefore, the estimation becomes the optimization problem

{R̂, t̂} = argmin
R,t

N∑
n=1

‖xn − T (Xn;R, t)‖2 . (1)

where xn ∈ Ω and Xn ∈ O are corresponding 2D and 3D points.

Vast amount of methods were proposed to solve this problem in computer vision. The registra-
tion is generally achieved in two steps: 1) finding point-to-point correspondences and 2) estimating
the transformation parameters by solving the optimization problem (1). One essential requirement
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of this kind of methods is the establishment of one-to-one point correspondences between 2D image
points and 3D model points. Certain strategies for this purpose have been proposed by using a local
feature descriptor, such as Harris, SIFT, MSER, or a more complex application specific feature, and
a mismatching elimination technique, such as RANSAC (RANdom SAmple Consensus), extended
Kalman filter, or particle filter. The registration can also be achieved in an iterative manner. The
classic method in this class is the Iterative Closest Point (ICP) algorithm, where in each iteration
the point-to-point correspondence is established through a function that associates to a image point
its closest point on the 3D model.

However, the problem is still difficult in practical X-ray image based interventions. Anatomical
landmarks are often difficult to locate in X-ray images and the corresponding 3D features may be
ambiguously defined. Problems present even where fiducials are used: Anatomy may obscure even
strong fiducials; several fiducials may have the same appearance; fiducials may be occluded; and
intraoperative clutter may introduce false fiducials in the images. Moreover, there are cases where it
is difficult to establish the required correspondences, for example because the 3D points are simply
features on a CAD model without associated texture. Therefore, when the correspondences cannot
be established a priori, a method that can estimate the transformation without the need of known
correspondences is desired.

Several correspondenceless registration methods were proposed. However, they either use sim-
plified camera models1 or have special requirements,2,3 and cannot be employed in our scenario.
The transformation parameters were estimated2 by assuming the object consists of planar surfaces
with closed curves drawn on them. A closed-form solution for 3D-2D registration without point-
to-point correspondences3 was proposed. The method, however, has a very strong constraint: the
camera can only has in-plane translation and rotation (i.e., moving in the XY -plane and rotat-
ing around the optical axis parallel to Z-axis). Another class of methods adapts well-known ICP
algorithm based on point-to-line distance.4 However, ICP can be easily trapped in local minima
due to the binary assignment of one-to-one correspondence, making it sensitive to initialization.
To simultaneously estimate the transformation and correspondences, SoftPOSIT is arguably the
most efficient and accurate algorithm, which combines an iterative pose estimation method and an
soft-assignment technique. However, it tends to fail in the presence of large amounts of cluster and
occlusions.

In this paper we propose a method to achieve the 3D-2D registration in a probability framework
without the requirement to impose one-to-one point correspondences. Taking fiducial-based regis-
tration as an example, we report the result of our experiments demonstrating that our method can
obtain accurate registration under the conditions where undistinguishable fiducials were occluded
or obscured by others and/or influenced by falsely detected fiducials, even thought the one-to-one
correspondence probabilities are not high for all points.

2. CORRESPONDENCELESS 3D-2D REGISTRATION

2.1 The Basic Idea

Given a set of 2D points, {xn}N1 , on the image and a set of 3D points, {Xm}M1 , on a 3D model.
These two sets of points are in different dimensions and generally have different numbers of points.
Without knowing the correspondences between them, it is common to assume that the n-th 2D
point, xn, has certain probability pmn to correspond to the m-th 3D point, Xm, given the current
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transformation parameter θ = {R, t}. There, by introducing this probability the optimization
problem (1) becomes

θ̂ = argmin
θ

N∑
n=1

M∑
m=1

pmn ‖xn − T (Xm;θ)‖2 . (2)

In this work, the correspondence probability is modeled as a 2D isotropic Gaussian function with
variance σ2 and taking the projected 3D point as its mean. The variance is also a parameter that
will be optimized. To account for outliers, we adopt a uniform distribution since there is no prior
information for them and they could be anywhere in the image. Several work5,6 used the similar
methodology, but none of them is for 3D-2D registration. Ideally, two point sets become overlapped
and σ2 approaches to zero. And once the optimal transformation has been obtained, the point-to-
point correspondence could be obtained by maximizing the a posterior probability. But there is no
one-to-one point correspondence used in our registration algorithm.

2.2 The Objective Function

Using the intuitive idea to formulate the object function and then solve it is not so straightforward.
In this section, we are going to show that, by casting it into a probability framework, the target
object function can be formulated and solved in a tractable way.

We model the correspondence probability p
(
xn|m,θ, σ2

)
= N

(
T (Xm;θ), σ2

)
a Gaussian dis-

tribution, and p(xn|M+1) = 1/N a uniform distribution. Consequently, with the i.i.d. assumption,
the observed-data likelihood function reads

Lobs(θ, σ
2|xn) =

N∏
n=1

(
M+1∑
m=1

p(xn|m,θ, σ2)P (m)

)
, (3)

where P (m) is the correspondence prior, which equals to 1/M since there no prior information for
it. Directly solving the maximum likelihood estimation (MLE) of θ and σ2 from (3) is extremely
difficult. Instead, we treat the correspondence as latent data as if we knew that xn corresponds to
Xm, i.e., the probability of that we observed data xn and knew that it was drawn from the m-th
distribution. Thus, the complete-data log-likelihood simplifies to

�com(θ, σ2|xn,m) = log

(
N∏

n=1

p(xn|m,θ, σ2)P (m)

)
, (4)

which is much more tractable. Taking the expectation of �com with respect to the prior correspon-
dence probability given the observations and latent data, and ignoring the constants independent
of θ and σ2, we obtained our objective function

Q(θ, σ2) =
1

2σ2

N∑
n=1

M∑
M=1

pmn ‖xn − T (Xm;θ)‖2 + C log σ2, (5)

where C =
∑M,N

m,n=1 pmn and pmn is the posterior probability of the correspondence, which can be
calculated using Bayesian formula. This result coincides with the procedure that we use to register
a 3D object to its 2D image: We generally could not register the 3D object with its 2D projection
in one trial, but progressively. Each time after (or during) rotating and translating the 3D object,
we try to find the correspondences and adjust our correspondence criteria (reflected by σ2). This
is the reason why σ2 is also optimized during the registration in our method.
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2.3 The Registration Algorithm

To find the MLE of θ and σ2, we adopt the expectation maximization (EM) framework and define
(5) as the surrogate function. Minimizing the surrogate function (5) necessarily decreases (4). The
EM algorithm is an iterative method for locating posterior modes by minimizing the expectation
of the complete-data log-likelihood with respect to the “current” parameter values. It proceeds by
alternating between the estimation (E-step) and the maximization (M-step), until convergence.

In the E-step of our method, pmn is estimated via the conventional way. However, there are two
major difficulties which prevent us from using the conventional M-step. First, the means of each
Gaussian component are constrained by the transformation parameters θ. Second, the estimate of
θ further conditions on the distribution parameter σ2. To tackle these difficulties, we employ the
expectation conditional maximization (ECM) algorithm,7 in which the M-step is replaced by a series
of conditional maximization (CM) steps. Theoretically, any ECM is a generalized EM algorithm
and it preserves the monotone convergence property. Thus, given the “current” transformation
parameter values, one can easily get the conditional MLE of σ2 as

σ̂2 =
1

2C

M∑
m=1

N∑
n=1

pmn ‖xn − T (Xm;θ)‖2. (6)

However, when maximizing (5) over θ conditioned on σ2, the CM-step still cannot be accom-
plished analytically. Fortunately, one could carry out this CM-step using numerical optimization
approach, and ECM may still be computationally simpler and more stable because it involves lower-
dimensional maximizations than EM. In addition, since the computation of pmn is light, we insert
the E-step between each pair of CM-steps, thereby updating (5) at every stage of the CM cycle.
To this end, we have the following method:

1. Initialize θ(0) and
(
σ2

)(0)
;

2. E-step: Compute the posterior modes p
(t)
mn;

3. CM-step: Compute the following CM-cycle:

• Compute
(
σ2

)(t+1)
by (6) using θ(t) and p

(t)
mn;

• Compute θ(t+1) using an numerical optimization approach, conditioned on (σ2)(t+1);

4. Check convergence.

Practically, in order for ECM to be convergent, one needs to ensure that each CM cycle effectively
maximizes over the original parameter space and not over some subspace. In this work, the pattern
search algorithm8 was used. However, our method is not limited to this specific adaptation; other
numerical optimization methods could be substituted. Convergence is guaranteed by the principle
of the generalized EM.

3. EXPERIMENTS AND RESULTS

The experiments were performed using X-ray images acquired from a fiducial attached on a sawbone
by a well calibrated C-arm bench system (see Fig. 1). In X-ray images, the fiducial occupies a
relatively small portion and overlaps with the sawbone. In addition, there are also some metal
beads affixed on the sawbone. Most importantly, the metal beads on the fiducial (as well as on
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the sawbone) are not distinguishable from each other. These conditions pose a hurdle in intensity-
based registration method. Our method achieved the 3D-2D registration using the nine beads on
the fiducial, without knowing the correspondences between the beads on the model and the points
detected in the X-ray images. Consequently, the six DOF transformation between the C-arm
detector and the fiducial was estimated.

Figure 1: The CAD model of the fiducial (left), the sawbone with the fiducial (middle left) and one
typical X-ray image of it (middle right) taken by the bench system (right).

The ground truth of the transformations was obtained from high resolution CT images. Each
bead in the CT data was manually segmented and fitted by a sphere, so that surface model of
each bead was created. Then, a point-to-point rigid registration between the surface model and the
CAD model was carried out, using the centers of the beads. The FRE of this procedure for all the
nine beads is 0.1428± 0.0589 mm.

The experiments were carried out on 100 X-ray images taken from different view points. For
each image, fifty trials were conducted using fifty different initial guesses. The initial guesses were
randomly and independently selected from transformations uniformly distributed within ±10◦ and
±15 mm of the ground truth. The mean errors and their standard deviations of each parameter
over 50 trials are shown in Fig. 4. The rotation errors were represented in angles for easy reading.
For fair comparison, fixed number of iterations was used. The mean errors and standard deviations
of each parameter over 50 trials were (0.18±3.52, 0.19±2.41, 0.51±4.00) degrees and (0.32±0.75,
−0.11 ± 0.75, 1.17 ± 4.95) mm in rotations and translations, respectively. As can be seen in Fig.
4, our proposed method estimated the rotations and in-plane (X-Y plane) translations with high
accuracy. Basically, the differences in rotations between the estimate and the ground truth were less
than 1 degree, and the the differences in in-plane translations between the estimate and the ground
truth were less than 1 mm. The estimates had relatively large error in the off-plane translation
(i.e. the depth along Z-direction). However, it is known that the depth can be difficult to be
accurately estimated for a 3D-2D registration algorithm using one single image. This could be
significantly improved when using two or more images whose relative positions are known. Fig. 4
also shows large deviations in some cases. This is due to the fact that, when the outliers and inliers
formed similar geometric structure as the fiducial beads, and the random guesses were just near
that structure, the registration errors became relatively large, leading to large deviations.

To further illustrating the robust of our method to outliers, one selected trial is shown in Fig. 2
(a-b). The errors of the initial guess were (−3.15◦, −3.15◦, −3.15◦) and (−9.44, −6.29, −12.59) mm
in rotation and translation, respectively. Although the beads were self-clustered in the image and
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(a) (b) (c) (d)

Figure 2: Two trials with different initial guesses (a), (c) and their registration results (b), (d) on
the same X-ray image. The top row shows the detected beads and the projections of the beads on
CAD model of the fiducial. The bottom row displays the corresponding map.

were with some outliers (the false detections and other beads on the sawbone), our method achieved
the desired registration result, with errors of (−0.11◦, 0.16◦, −0.02◦) and (0.14, −0.05, 2.74) mm.
Further, the final one-to-one correspondence was not crucial to the accuracy of our method. Fig.
2 (c-d) dipict another trial on the same image. The errors of the initial guess were (9.01◦, −8.05◦,
−8.90◦) and (13.51, −12.08, −8.90) mm while the registration errors read (−0.16◦, 0.08◦, −1.14◦)
and (0.30, −0.09, 1.04) mm. Fig. 3 illustrates the robustness of our method to the missing points
in addition to outliers. In the X-ray image, two beads on the fiducial were obscured by the frame of
the fiducial. In addition, the initial guess introduced falsely matched correspondences, as shown in
the correspondence map. In this case, our method still achieved a desirable registration with errors
of (−0.170◦, 0.052◦, 0.045◦) and (0.484, -0.023, 4.251) mm, respectively, compared with the initial
errors of (−4.430◦, 0.938◦, 9.150◦) and (-6.645, 1.406, 13.725) mm.

4. CONCLUSION

We introduce a novel 3D-2D registration algorithm without known correspondences. Unlike the
methods that iteratively find the most likely correspondences from a set of candidates and then
estimate the registration, our method assumes that every 3D point has certain correspondence
probabilities with all the 2D points. Modeling the correspondence probabilities using a mixture
model integrating Gaussian distributions and a uniform distribution, the correspondenceless 3D-2D
registration is achieved using a ECM algorithm. The experiments using real X-ray images has shown
that, our method is robust to outliers and the low probabilities for final one-to-one correspondence
does not affect the registration result much.
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two falsely matched correspondences, our method still obtained desired registration result.

[2] Kanatani, K.-I., “Tracing planar surface motion from a projection without knowing the corre-
spondence,” Computer Vision, Graphics, and Image Processing 29(1), 1 – 12 (1985).

[3] Liu, Y. and Rodrigues, M. A., “Statistical image analysis for pose estimation without point
correspondences,” Pattern Recognition Letters 22(11), 1191 – 1206 (2001).

[4] Fleute, M. and Lavallée, S., “Nonrigid 3-D/2-D registration of images using statistical mod-
els,” in [MICCAI’99 ], C. Taylor, A. C., ed., LNCS 1679, 138–147, Springer-Verlag, Berlin
Heidelberg (1999).
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(a) Rotation errors in θx (b) Rotation errors in θy

(c) Rotation errors in θz (d) Translation errors in tx

(e) Translation errors in ty (f) Translation errors in tz
Figure 4: The statistics of registration errors in rotations about X-, Y -, and Z-axis and in trans-
lations along X-, Y -, and Z-axis.
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