17 research outputs found

    How Universal Is the Relationship Between Remotely Sensed Vegetation Indices (VI) and Crop Leaf Area Index (LAI)?

    Get PDF
    Global LAI-VI relationships are statistically significant, crop-specific, and mostly non-linear. This research enables the operationalization of large-area crop modeling and, by extension, has relevance to both fundamental and applied agroecosystem research

    Evaluation of the Uncertainty in Satellite-Based Crop State Variable Retrievals Due to Site and Growth Stage Specific Factors and Their Potential in Coupling with Crop Growth Models

    Full text link
    Coupling crop growth models and remote sensing provides the potential to improve our understanding of the genotype x environment x management (G X E X M) variability of crop growth on a global scale. Unfortunately, the uncertainty in the relationship between the satellite measurements and the crop state variables across different sites and growth stages makes it diffcult to perform the coupling. In this study, we evaluate the effects of this uncertainty with MODIS data at the Mead, Nebraska Ameriflux sites (US-Ne1, US-Ne2, and US-Ne3) and accurate, collocated Hybrid-Maize (HM) simulations of leaf area index (LAI) and canopy light use effciency (LUECanopy). The simulations are used to both explore the sensitivity of the satellite-estimated genotype X management (G X M) parameters to the satellite retrieval regression coeffcients and to quantify the amount of uncertainty attributable to site and growth stage specific factors. Additional ground-truth datasets of LAI and LUECanopy are used to validate the analysis. The results show that uncertainty in the LAI/satellite measurement regression coeffcients lead to large uncertainty in the G X Mparameters retrievable from satellites. In addition to traditional leave-one-site-out regression analysis, the regression coeffcient uncertainty is assessed by evaluating the retrieval performance of the temporal change in LAI and LUECanopy. The weekly change in LAI is shown to be retrievable with a correlation coeffcient absolute value (|r|) of 0.70 and root-mean square error (RMSE) value of 0.4, which is significantly better than the performance expected if the uncertainty was caused by random error rather than secondary effects caused by site and growth stage specific factors (an expected |r| value of 0.36 and RMSE value of 1.46 assuming random error). As a result, this study highlights the importance of accounting for site and growth stage specific factors in remote sensing retrievals for future work developing methods coupling remote sensing with crop growth models

    How Universal is the Relationship Between Remotely Sensed Vegetation Indices and Crop Leaf Area Index? A Global Assessment

    Get PDF
    Leaf Area Index (LAI) is a key variable that bridges remote sensing observations to the quantification of agroecosystem processes. In this study, we assessed the universality of the relationships between crop LAI and remotely sensed Vegetation Indices (VIs). We first compiled a global dataset of 1459 in situ quality-controlled crop LAI measurements and collected Landsat satellite images to derive five different VIs including Simple Ratio (SR), Normalized Difference Vegetation Index (NDVI), two versions of the Enhanced Vegetation Index (EVI and EVI2), and Green Chlorophyll Index (CI(sub Green)). Based on this dataset, we developed global LAI-VI relationships for each crop type and VI using symbolic regression and Theil-Sen (TS) robust estimator. Results suggest that the global LAI-VI relationships are statistically significant, crop-specific, and mostly non-linear. These relationships explain more than half of the total variance in ground LAI observations (R2 greater than 0.5), and provide LAI estimates with RMSE below 1.2 m2/m2. Among the five VIs, EVI/EVI2 are the most effective, and the crop-specific LAI-EVI and LAI-EVI2 relationships constructed by TS, are robust when tested by three independent validation datasets of varied spatial scales. While the heterogeneity of agricultural landscapes leads to a diverse set of local LAI-VI relationships, the relationships provided here represent global universality on an average basis, allowing the generation of large-scale spatial-explicit LAI maps. This study contributes to the operationalization of large-area crop modeling and, by extension, has relevance to both fundamental and applied agroecosystem research

    OpenET : filling a critical data gap in water management for the western United States.

    Get PDF
    The lack of consistent, accurate information on evapotranspiration (ET) and consumptive use of water by irrigated agriculture is one of the most important data gaps for water managers in the western United States (U.S.) and other arid agricultural regions globally. The ability to easily access information on ET is central to improving water budgets across the West, advancing the use of data-driven irrigation management strategies, and expanding incentive-driven conservation programs. Recent advances in remote sensing of ET have led to the development of multiple approaches for field-scale ET mapping that have been used for local and regional water resource management applications by U.S. state and federal agencies. The OpenET project is a community-driven effort that is building upon these advances to develop an operational system for generating and distributing ET data at a field scale using an ensemble of six well-established satellite-based approaches for mapping ET. Key objectives of OpenET include: Increasing access to remotely sensed ET data through a web-based data explorer and data services; supporting the use of ET data for a range of water resource management applications; and development of use cases and training resources for agricultural producers and water resource managers. Here we describe the OpenET framework, including the models used in the ensemble, the satellite, meteorological, and ancillary data inputs to the system, and the OpenET data visualization and access tools. We also summarize an extensive intercomparison and accuracy assessment conducted using ground measurements of ET from 139 flux tower sites instrumented with open path eddy covariance systems. Results calculated for 24 cropland sites from Phase I of the intercomparison and accuracy assessment demonstrate strong agreement between the satellite-driven ET models and the flux tower ET data. For the six models that have been evaluated to date (ALEXI/DisALEXI, eeMETRIC, geeSEBAL, PT-JPL, SIMS, and SSEBop) and the ensemble mean, the weighted average mean absolute error (MAE) values across all sites range from 13.6 to 21.6 mm/month at a monthly timestep, and 0.74 to 1.07 mm/day at a daily timestep. At seasonal time scales, for all but one of the models the weighted mean total ET is within ±8% of both the ensemble mean and the weighted mean total ET calculated from the flux tower data. Overall, the ensemble mean performs as well as any individual model across nearly all accuracy statistics for croplands, though some individual models may perform better for specific sites and regions. We conclude with three brief use cases to illustrate current applications and benefits of increased access to ET data, and discuss key lessons learned from the development of OpenET

    Comparative assessment of environmental variables and machine learning algorithms for maize yield prediction in the US Midwest

    No full text
    Crop yield estimates over large areas are conventionally made using weather observations, but a comprehensive understanding of the effects of various environmental indicators, observation frequency, and the choice of prediction algorithm remains elusive. Here we present a thorough assessment of county-level maize yield prediction in U.S. Midwest using six statistical/machine learning algorithms (Lasso, Support Vector Regressor, Random Forest, XGBoost, Long-short term memory (LSTM), and Convolutional Neural Network (CNN)) and an extensive set of environmental variables derived from satellite observations, weather data, land surface model results, soil maps, and crop progress reports. Results show that seasonal crop yield forecasting benefits from both more advanced algorithms and a large composite of information associated with crop canopy, environmental stress, phenology, and soil properties (i.e. hundreds of features). The XGBoost algorithm outperforms other algorithms both in accuracy and stability, while deep neural networks such as LSTM and CNN are not advantageous. The compositing interval (8-day, 16-day or monthly) of time series variable does not have significant effects on the prediction. Combining the best algorithm and inputs improves the prediction accuracy by 5% when compared to a baseline statistical model (Lasso) using only basic climatic and satellite observations. Reasonable county-level yield foresting is achievable from early June, almost four months prior to harvest. At the national level, early-season (June and July) prediction from the best model outperforms that of the United States Department of Agriculture (USDA) World Agricultural Supply and Demand Estimates (WASDE). This study provides insights into practical crop yield forecasting and the understanding of yield response to climatic and environmental conditions

    Early Identification of Seed Maize and Common Maize Production Fields Using Sentinel-2 Images

    No full text
    Accurate and timely access to the production area of crop seeds allows the seed market and secure seed supply to be monitored. Seed maize and common maize production fields typically share similar phenological development profiles with differences in the planting patterns, which makes it challenging to separate these fields from decametric-resolution satellite images. In this research, we proposed a method to identify seed maize production fields as early as possible in the growing season using a time series of remote sensing images in the Liangzhou district of Gansu province, China. We collected Sentinel-2 and GaoFen-1 (GF-1) images captured from March to September. The feature space for classification consists of four original bands, namely red, green, blue, and near-infrared (nir), and eight vegetation indexes. We analyzed the timeliness of seed maize identification using Sentinel-2 time series of different time spans and identified the earliest time frame for reasonable classification accuracy. Then, the earliest time series that met the requirements of regulatory accuracy were compared and analyzed. Four machine/deep learning algorithms were tested, including K-nearest neighbor (KNN), support vector classification (SVC), random forest (RF), and long short-term memory (LSTM). The results showed that using Sentinel-2 images from March to June, the RF and LSTM algorithms achieve over 88% accuracy, with the LSTM performing the best (90%). In contrast, the accuracy of KNN and SVC was between 82% and 86%. At the end of June, seed maize mapping can be carried out in the experimental area, and the precision can meet the basic requirements of monitoring for the seed industry. The classification using GF-1 images were less accurate and reliable; the accuracy was 85% using images from March to June. To achieve near real-time identification of seed maize fields early in the growing season, we adopted an automated sample generation approach for the current season using only historical samples based on clustering analysis. The classification accuracy using new samples extracted from historical mapping reached 74% by the end of the season (September) and 63% by the end of July. This research provides important insights into the classification of crop fields cultivated with the same crop but different planting patterns using remote sensing images. The approach proposed by this study enables near-real time identification of seed maize production fields within the growing season, which could effectively support large-scale monitoring of the seed supply industry
    corecore