19 research outputs found

    Enhancing the genome editing toolbox: genome wide CRISPR arrayed libraries.

    Get PDF
    CRISPR-Cas9 technology has accelerated biological research becoming routine for many laboratories. It is rapidly replacing conventional gene editing techniques and has high utility for both genome-wide and gene-focussed applications. Here we present the first individually cloned CRISPR-Cas9 genome wide arrayed sgRNA libraries covering 17,166 human and 20,430 mouse genes at a complexity of 34,332 sgRNAs for human and 40,860 sgRNAs for the mouse genome. For flexibility in generating stable cell lines the sgRNAs have been cloned in a lentivirus backbone containing PiggyBac transposase recognition elements together with fluorescent and drug selection markers. Over 95% of tested sgRNA induced specific DNA cleavage as measured by CEL-1 assays. Furthermore, sgRNA targeting GPI anchor protein pathway genes induced loss of function mutations in human and mouse cell lines measured by FLAER labelling. These arrayed libraries offer the prospect for performing screens on individual genes, combinations as well as larger gene sets. They also facilitate rapid deconvolution of signals from genome-wide screens. This set of vectors provide an organized comprehensive gene editing toolbox of considerable scientific value

    Vitamin D and cause-specific vascular disease and mortality:a Mendelian randomisation study involving 99,012 Chinese and 106,911 European adults

    Get PDF

    Curcumin Inhibits srebp-2 Expression in Activated Hepatic Stellate Cells in Vitro by Reducing the Activity of Specificity Protein-1

    No full text
    Elevated levels of cholesterol/low-density lipoprotein (LDL) are a risk factor for the development of nonalcoholic steatohepatitis and its associated hepatic fibrosis. However, underlying mechanisms remain elusive. We previously reported that curcumin induced gene expression of peroxisome proliferator-activated receptor (PPAR)-γ and stimulated its activity, leading to the inhibition of the activation of hepatic stellate cells (HSCs), the major effector cells during hepatic fibrogenesis. We recently showed that curcumin suppressed gene expression of LDL receptor in activated HSCs in vitro by repressing gene expression of the transcription factor sterol regulatory element binding protein-2 (SREBP-2), leading to the reduction in the level of intracellular cholesterol in HSCs and to the attenuation of the stimulatory effects of LDL on HSCs activation. The current study aimed at exploring molecular mechanisms by which curcumin inhibits srebp-2 expression in HSCs. Promoter deletion assays, mutagenesis assays, and EMSAs localize a specificity protein-1 (SP-1) binding GC-box in the srebp-2 promoter, which is responsible for enhancing the promoter activity and responding to curcumin in HSCs. Curcumin suppresses gene expression of SP-1 and reduces its trans-activation activity, which are mediated by the activation of PPARγ. The inhibitory effect of curcumin on SP-1 binding to the GC-box is confirmed by chromatin immuno-precipitation. In summary, our results demonstrate that curcumin inhibits srebp-2 expression in cultured HSCs by activating PPARγ and reducing the SP-1 activity, leading to the repression of ldlr expression. These results provide novel insights into molecular mechanisms by which curcumin inhibits LDL-induced HSC activation
    corecore