939 research outputs found

    Computational Modeling of Solvent Effect on Fluorescence Spectra. Implications to the Fluorescent State Structure

    Full text link
    The financial support of the National Science Fund of Bulgaria (Contract DN 19/11, 10.12.2017) is gratefully acknowledged

    Design and Photophysics of 2-Vinyl Quinazolin-4-ones

    Full text link
    The reported work has been carried out under Contract DN 19/11, 10.12.2017, with the National Science Fund of Bulgaria

    Status and Performance of New Silicon Stripixel Detector for the PHENIX Experiment at RHIC: Beta Source, Cosmic-rays and Proton Beam at 120 GeV

    Full text link
    We are constructing a Silicon Vertex Tracker detector (VTX) for the PHENIX experiment at RHIC. Our main motivation is to enable measurements of heavy flavor production (charm and beauty) in p+p, p+d and A+A collisions. Such data will illuminate the properties of the matter created in high-energy heavy-ion collisions. The measurements also will reveal the distribution of gluons in protons from p+p collisions. The VTX detector consists of four layers of barrel detectors and covers |eta|< 1.2, and almost a 2pi in azimuth. The inner two silicon barrels consist of silicon pixel sensors; their technology accords with that of the ALICE1LHCB sensor-readout hybrid. The outer two barrels are silicon stripixel detectors with a new "spiral" design, and a single-sided sensor with 2-dimensional (X, U) readout. In this paper, we describe the silicon stripixel detector and discuss its performance, including its response to electrons from a beta source (90Sr), muons from cosmic-rays, and a 120 GeV proton beam. The results from the proton beam demonstrate that the principle of two-dimensional position sensitivity based on charge sharing works; the signal-to-noise value is 10.4, the position resolution is 33.6 um for X-stripixel (35.2 um for U-stripixel), and the tracking efficiencies in the X- and U-stripixels are, over 98.9 +/- 0.2%. The stripixel detector within the VTX project is in the pre-production phase.Comment: Accepted for publication in Journal of Instrumentation (JINST). Invited talk at Pixel 2008 International Workshop, September 23-26, 2008, Fermilab, Batavia, Illinois, U.S.

    L\'evy-stable two-pion Bose-Einstein correlations in sNN=200\sqrt{s_{_{NN}}}=200 GeV Au++Au collisions

    Full text link
    We present a detailed measurement of charged two-pion correlation functions in 0%-30% centrality sNN=200\sqrt{s_{_{NN}}}=200 GeV Au++Au collisions by the PHENIX experiment at the Relativistic Heavy Ion Collider. The data are well described by Bose-Einstein correlation functions stemming from L\'evy-stable source distributions. Using a fine transverse momentum binning, we extract the correlation strength parameter λ\lambda, the L\'evy index of stability α\alpha and the L\'evy length scale parameter RR as a function of average transverse mass of the pair mTm_T. We find that the positively and the negatively charged pion pairs yield consistent results, and their correlation functions are represented, within uncertainties, by the same L\'evy-stable source functions. The λ(mT)\lambda(m_T) measurements indicate a decrease of the strength of the correlations at low mTm_T. The L\'evy length scale parameter R(mT)R(m_T) decreases with increasing mTm_T, following a hydrodynamically predicted type of scaling behavior. The values of the L\'evy index of stability α\alpha are found to be significantly lower than the Gaussian case of α=2\alpha=2, but also significantly larger than the conjectured value that may characterize the critical point of a second-order quark-hadron phase transition.Comment: 448 authors, 25 pages, 11 figures, 4 tables, 2010 data. v2 is version accepted for publication in Phys. Rev. C. Plain text data tables for the points plotted in figures for this and previous PHENIX publications are (or will be) publicly available at http://www.phenix.bnl.gov/papers.htm

    J/psi suppression at forward rapidity in Au+Au collisions at sqrt(s_NN)=39 and 62.4 GeV

    Get PDF
    We present measurements of the J/psi invariant yields in sqrt(s_NN)=39 and 62.4 GeV Au+Au collisions at forward rapidity (1.2<|y|<2.2). Invariant yields are presented as a function of both collision centrality and transverse momentum. Nuclear modifications are obtained for central relative to peripheral Au+Au collisions (R_CP) and for various centrality selections in Au+Au relative to scaled p+p cross sections obtained from other measurements (R_AA). The observed suppression patterns at 39 and 62.4 GeV are quite similar to those previously measured at 200 GeV. This similar suppression presents a challenge to theoretical models that contain various competing mechanisms with different energy dependencies, some of which cause suppression and others enhancement.Comment: 365 authors, 10 pages, 11 figures, 4 tables. Submitted to Phys. Rev. C. Plain text data tables for the points plotted in figures for this and previous PHENIX publications are (or will be) publicly available at http://www.phenix.bnl.gov/papers.htm

    Measurement of higher cumulants of net-charge multiplicity distributions in Au++Au collisions at sNN=7.7200\sqrt{s_{_{NN}}}=7.7-200 GeV

    Full text link
    We report the measurement of cumulants (Cn,n=14C_n, n=1\ldots4) of the net-charge distributions measured within pseudorapidity (η<0.35|\eta|<0.35) in Au++Au collisions at sNN=7.7200\sqrt{s_{_{NN}}}=7.7-200 GeV with the PHENIX experiment at the Relativistic Heavy Ion Collider. The ratios of cumulants (e.g. C1/C2C_1/C_2, C3/C1C_3/C_1) of the net-charge distributions, which can be related to volume independent susceptibility ratios, are studied as a function of centrality and energy. These quantities are important to understand the quantum-chromodynamics phase diagram and possible existence of a critical end point. The measured values are very well described by expectation from negative binomial distributions. We do not observe any nonmonotonic behavior in the ratios of the cumulants as a function of collision energy. The measured values of C1/C2=μ/σ2C_1/C_2 = \mu/\sigma^2 and C3/C1=Sσ3/μC_3/C_1 = S\sigma^3/\mu can be directly compared to lattice quantum-chromodynamics calculations and thus allow extraction of both the chemical freeze-out temperature and the baryon chemical potential at each center-of-mass energy.Comment: 512 authors, 8 pages, 4 figures, 1 table. v2 is version accepted for publication in Phys. Rev. C as a Rapid Communication. Plain text data tables for the points plotted in figures for this and previous PHENIX publications are (or will be) publicly available at http://www.phenix.bnl.gov/papers.htm

    Transverse energy production and charged-particle multiplicity at midrapidity in various systems from sNN=7.7\sqrt{s_{NN}}=7.7 to 200 GeV

    Full text link
    Measurements of midrapidity charged particle multiplicity distributions, dNch/dηdN_{\rm ch}/d\eta, and midrapidity transverse-energy distributions, dET/dηdE_T/d\eta, are presented for a variety of collision systems and energies. Included are distributions for Au++Au collisions at sNN=200\sqrt{s_{_{NN}}}=200, 130, 62.4, 39, 27, 19.6, 14.5, and 7.7 GeV, Cu++Cu collisions at sNN=200\sqrt{s_{_{NN}}}=200 and 62.4 GeV, Cu++Au collisions at sNN=200\sqrt{s_{_{NN}}}=200 GeV, U++U collisions at sNN=193\sqrt{s_{_{NN}}}=193 GeV, dd++Au collisions at sNN=200\sqrt{s_{_{NN}}}=200 GeV, 3^{3}He++Au collisions at sNN=200\sqrt{s_{_{NN}}}=200 GeV, and pp++pp collisions at sNN=200\sqrt{s_{_{NN}}}=200 GeV. Centrality-dependent distributions at midrapidity are presented in terms of the number of nucleon participants, NpartN_{\rm part}, and the number of constituent quark participants, NqpN_{q{\rm p}}. For all AA++AA collisions down to sNN=7.7\sqrt{s_{_{NN}}}=7.7 GeV, it is observed that the midrapidity data are better described by scaling with NqpN_{q{\rm p}} than scaling with NpartN_{\rm part}. Also presented are estimates of the Bjorken energy density, εBJ\varepsilon_{\rm BJ}, and the ratio of dET/dηdE_T/d\eta to dNch/dηdN_{\rm ch}/d\eta, the latter of which is seen to be constant as a function of centrality for all systems.Comment: 706 authors, 32 pages, 20 figures, 34 tables, 2004, 2005, 2008, 2010, 2011, and 2012 data. v2 is version accepted for publication in Phys. Rev.
    corecore