548 research outputs found

    The role of training in IBA implementation beyond primary health care settings in the UK

    Get PDF
    There has been a considerable drive to encourage a wide range of professional groups to incorporate alcohol screening (or identification) and brief advice (IBA) into their everyday practice. This article aims to examine the role of training in promoting IBA delivery in contexts outside primary care and other health settings. The data are drawn mainly from a structured online survey supplemented by illustrative material from nine qualitative interviews and insights from an expert workshop. Findings support the results from other research that issues relating to role relevance and role security continue to act as barriers to professional change. Furthermore, issues of organisational commitment and organisational barriers are insufficiently addressed in strategy to promote wider use of IBA. The article concludes that development of appropriate training for alcohol IBA needs to take account of the role of IBA within a complex interactive system of related services and help seeking pathways and consider how training can contribute to changing both professional attitudes and behaviours and organisational approaches to implementing and sustaining IBA in everyday professional practice

    Acoustic Cyclotron Resonance and Giant High Frequency Magnetoacoustic Oscillations in Metals with Locally Flattened Fermi Surface

    Full text link
    We consider the effect of local flattening on the Fermi surface (FS) of a metal upon geometric oscillations of the velocity and attenuation of ultrasonic waves in the neighborhood of the acoustic cyclotron resonance. It is shown that such peculiarities of the local geometry of the FS can lead to a significant enhancement of both cyclotron resonance and geometric oscillations. Characteristic features of the coupling of ultrasound to shortwave cyclotron waves arising due to the local flattening of the FS are analyzed. PACS numbers 71.18.+y; 72.15.Gd; 72.15.-vComment: 8 pages, 3 figures, text revise

    Patching laser-reduced graphene oxide with carbon nanodots

    No full text
    Three-dimensional graphenes are versatile materials for a range of electronic applications and considered among the most promising candidates for electrodes in future electric double layer capacitors (EDLCs) as they are expected to outperform commercially used activated carbon. Parameters such as electrical conductivity and active surface area are critical to the final device performance. By adding carbon nanodots to graphene oxide in the starting material for our standard laser-assisted reduction process, the structural integrity (i.e. lower defect density) of the final 3D-graphene is improved. As a result, the active surface area in the hybrid starting materials was increased by 130% and the electrical conductivity enhanced by nearly an order of magnitude compared to pure laser-reduced graphene oxide. These improved material parameters lead to enhanced device performance of the EDLC electrodes. The frequency response, i.e. the minimum phase angle and the relaxation time, were significantly improved from −82.2° and 128 ms to −84.3° and 7.6 ms, respectively. For the same devices the specific gravimetric device capacitance was increased from 110 to a maximum value of 214 F g−1 at a scan rate of 10 mV s−1

    Probing Spin-Charge Relation by Magnetoconductance in One-Dimensional Polymer Nanofibers

    Get PDF
    Polymer nanofibers are one-dimensional organic hydrocarbon systems containing conducting polymers where the non-linear local excitations such as solitons, polarons and bipolarons formed by the electron-phonon interaction were predicted. Magnetoconductance (MC) can simultaneously probe both the spin and charge of these mobile species and identify the effects of electron-electron interactions on these nonlinear excitations. Here we report our observations of a qualitatively different MC in polyacetylene (PA) and in polyaniline (PANI) and polythiophene (PT) nanofibers. In PA the MC is essentially zero, but it is present in PANI and PT. The universal scaling behavior and the zero (finite) MC in PA (PANI and PT) nanofibers provide evidence of Coulomb interactions between spinless charged solitons (interacting polarons which carry both spin and charge)

    Quantum Oscillations of Elastic Moduli and Softening of Phonon Modes in Metals

    Full text link
    In this paper we present a theoretical analysis of the effect of magnetostriction on quantum oscillations of elastic constants in metals under strong magnetic fields. It is shown that at low temperatures a significant softening of some acoustic modes could occur near peaks of quantum oscillations of the electron density of states (DOS) at the Fermi surface (FS). This effect is caused by a magnetic instability of a special kind, and it can give rise to a lattice instability. We also show that the most favorable conditions for this instability to be revealed occur in metals whose Fermi surfaces include nearly cylindrical segments.Comment: 5 pages, 1 figur

    Can screening and brief intervention lead to population-level reductions in alcohol-related harm?

    Get PDF
    A distinction is made between the clinical and public health justifications for screening and brief intervention (SBI) against hazardous and harmful alcohol consumption. Early claims for a public health benefit of SBI derived from research on general medical practitioners' (GPs') advice on smoking cessation, but these claims have not been realized, mainly because GPs have not incorporated SBI into their routine practice. A recent modeling exercise estimated that, if all GPs in England screened every patient at their next consultation, 96% of the general population would be screened over 10 years, with 70-79% of excessive drinkers receiving brief interventions (BI); assuming a 10% success rate, this would probably amount to a population-level effect of SBI. Thus, a public health benefit for SBI presupposes widespread screening; but recent government policy in England favors targeted versus universal screening, and in Scotland screening is based on new registrations and clinical presentation. A recent proposal for a national screening program was rejected by the UK National Health Service's National Screening Committee because 1) there was no good evidence that SBI led to reductions in mortality or morbidity, and 2) a safe, simple, precise, and validated screening test was not available. Even in countries like Sweden and Finland, where expensive national programs to disseminate SBI have been implemented, only a minority of the population has been asked about drinking during health-care visits, and a minority of excessive drinkers has been advised to cut down. Although there has been research on the relationship between treatment for alcohol problems and population-level effects, there has been no such research for SBI, nor have there been experimental investigations of its relationship with population-level measures of alcohol-related harm. These are strongly recommended. In this article, conditions that would allow a population-level effect of SBI to occur are reviewed, including their political acceptability. It is tentatively concluded that widespread dissemination of SBI, without the implementation of alcohol control measures, might have indirect influences on levels of consumption and harm but would be unlikely on its own to result in public health benefits. However, if and when alcohol control measures were introduced, SBI would still have an important role in the battle against alcohol-related harm

    On the Theory of Quantum Oscillations of the Elastic Moduli in Layered Conductors

    Full text link
    In this paper we study theoretically how the local geometry of the Fermi surface (FS) of a layered conductor can affect quantum oscillations in the thermodynamic observables. We introduce a concrete model of the FS of a layered conductor. The model permits us to analyze the characteristic features of quantum oscillatory phenomena in these materials which occure due to local anomalies of the Gaussian curvature of the FS. Our analysis takes into account strong interaction among quasiparticles and we study the effect of this interaction within the framework of Fermi-liquid theory. We show that the Fermi-liquid interaction strongly affects the density of states of quasiparticles (DOS) on the FS. As a result DOS can have singularities near the peaks of its oscillations in a strong magnetic field. These singularities can be significantly strengthened when the FS of the layered conductor is locally flattened. This can lead to magnetic and lattice instabilities of a special kind which are considered in the final part of the work.Comment: 11 pages, 2 figures, minor changes in the title are made, published versio
    corecore