131 research outputs found

    Active Initialization Experiment of Superconducting Qubit Using Quantum-circuit Refrigerator

    Full text link
    The initialization of superconducting qubits is one of the essential techniques for the realization of quantum computation. In previous research, initialization above 99\% fidelity has been achieved at 280 ns. Here, we demonstrate the rapid initialization of a superconducting qubit with a quantum-circuit refrigerator (QCR). Photon-assisted tunneling of quasiparticles in the QCR can temporally increase the relaxation time of photons inside the resonator and helps release energy from the qubit to the environment. Experiments using this protocol have shown that 99\% of initialization time is reduced to 180 ns. This initialization time depends strongly on the relaxation rate of the resonator, and faster initialization is possible by reducing the resistance of the QCR, which limits the ON/OFF ratio, and by strengthening the coupling between the QCR and the resonator

    A Step-up Approach for Cell Therapy in Stroke: Translational Hurdles of Bone Marrow-Derived Stem Cells

    Get PDF
    Stroke remains a significant unmet condition in the USA and throughout the world. To date, only approximately 3% of the population suffering an ischemic stroke benefit from the thrombolytic drug tissue plasminogen activator, largely due to the drug’s narrow therapeutic window. The last decade has witnessed extensive laboratory studies suggesting the therapeutic potential of cell-based therapy for stroke. Limited clinical trials of cell therapy in stroke patients are currently being pursued. Bone marrow-derived stem cells are an attractive, novel transplantable cell source for stroke. There remain many unanswered questions in the laboratory before cell therapy can be optimized for transplantation in the clinical setting. Here, we discuss the various translational hurdles encountered in bringing cell therapy from the laboratory to the clinic, using stem cell therapeutics as an emerging paradigm for stroke as a guiding principle. In particular, we focus on the preclinical studies of cell transplantation in experimental stroke with emphasis on a better understanding of mechanisms of action in an effort to optimize efficacy and to build a safety profile for advancing cell therapy to the clinic. A forward looking strategy of combination therapy involving stem cell transplantation and pharmacologic treatment is also discussed

    Genomic adaptation of giant viruses in polar oceans

    Get PDF
    寒冷域と温暖域ではウイルスの遺伝子組成が異なる --巨大ウイルスの環境適応--. 京都大学プレスリリース. 2023-10-13.Despite being perennially frigid, polar oceans form an ecosystem hosting high and unique biodiversity. Various organisms show different adaptive strategies in this habitat, but how viruses adapt to this environment is largely unknown. Viruses of phyla Nucleocytoviricota and Mirusviricota are groups of eukaryote-infecting large and giant DNA viruses with genomes encoding a variety of functions. Here, by leveraging the Global Ocean Eukaryotic Viral database, we investigate the biogeography and functional repertoire of these viruses at a global scale. We first confirm the existence of an ecological barrier that clearly separates polar and nonpolar viral communities, and then demonstrate that temperature drives dramatic changes in the virus–host network at the polar–nonpolar boundary. Ancestral niche reconstruction suggests that adaptation of these viruses to polar conditions has occurred repeatedly over the course of evolution, with polar-adapted viruses in the modern ocean being scattered across their phylogeny. Numerous viral genes are specifically associated with polar adaptation, although most of their homologues are not identified as polar-adaptive genes in eukaryotes. These results suggest that giant viruses adapt to cold environments by changing their functional repertoire, and this viral evolutionary strategy is distinct from the polar adaptation strategy of their hosts

    Vagus-macrophage-hepatocyte link promotes post-injury liver regeneration and whole-body survival through hepatic FoxM1 activation

    Get PDF
    The mechanisms underlying the regenerative capacity of the liver are not fully understood. Here, the authors show that the acute regenerative response to liver injury in mice is regulated by the communication involving the vagus nerve, macrophages, and hepatocytes, leading to hepatic FoxM1 activation and promotion of overall survival

    Analysis of DOC and Ram for NSCLC

    Get PDF
    Background: Current clinical trials demonstrated that combination regimens comprising chemotherapy and immunotherapy lead to better patient outcomes compared to chemotherapy alone as the first line of treatment for non-small cell lung cancer (NSCLC). In addition, the combination therapy of docetaxel (Doc) and ramucirumab (Ram) was considered one of the standard treatments for advanced or relapsed NSCLC patients. However, little is known about the therapeutic responders of this combination therapy among previously treated NSCLC patients. In the present study, we aimed to identify predictive factors for therapeutic response, including programmed death-ligand 1 (PD-L1) expression in tumors, for Doc treatment in combination with Ram. Methods: We retrospectively analyzed a total of 135 advanced or relapsed NSCLC patients who were refractory to platinum-based chemotherapy at eleven institutions in Japan between July 2016 and November 2018. Results: Our observations showed that PD-L1 expression in tumors is not associated with the efficacy of combined therapy of Doc and Ram in previously treated NSCLC patients. Analysis of the patient clinical profiles indicated that prior treatment with immune checkpoint inhibitors (ICIs) is a reliable predictor for the good progression-free survival (PFS) to this combination therapy (P=0.041). Conclusions: Our retrospective study indicated that combination regimens comprising chemotherapy and ICIs followed by Doc and Ram could be an optimal therapeutic option for NSCLC patients regardless of the PD-L1 status of tumors. Further investigations are required to strengthen clinical evidence demonstrating the effectiveness of the combination therapy of Doc plus Ram in previously treated NSCLC patients

    Toward Personalized Cell Therapies: Autologous Menstrual Blood Cells for Stroke

    Get PDF
    Cell therapy has been established as an important field of research with considerable progress in the last years. At the same time, the progressive aging of the population has highlighted the importance of discovering therapeutic alternatives for diseases of high incidence and disability, such as stroke. Menstrual blood is a recently discovered source of stem cells with potential relevance for the treatment of stroke. Migration to the infarct site, modulation of the inflammatory reaction, secretion of neurotrophic factors, and possible differentiation warrant these cells as therapeutic tools. We here propose the use of autologous menstrual blood cells in the restorative treatment of the subacute phase of stroke. We highlight the availability, proliferative capacity, pluripotency, and angiogenic features of these cells and explore their mechanistic pathways of repair. Practical aspects of clinical application of menstrual blood cells for stroke will be discussed, from cell harvesting and cryopreservation to administration to the patient

    Eukaryotic virus composition can predict the efficiency of carbon export in the global ocean

    Get PDF
    海洋ウイルスの種組成と炭素の鉛直輸送の相関を確認 --ウイルスによる地球環境の制御を示唆. 京都大学プレスリリース. 2021-01-15.The biological carbon pump, in which carbon fixed by photosynthesis is exported to the deep ocean through sinking, is a major process in Earth's carbon cycle. The proportion of primary production that is exported is termed the carbon export efficiency (CEE). Based on in-lab or regional scale observations, viruses were previously suggested to affect the CEE (i.e., viral “shunt” and “shuttle”). In this study, we tested associations between viral community composition and CEE measured at a global scale. A regression model based on relative abundance of viral marker genes explained 67% of the variation in CEE. Viruses with high importance in the model were predicted to infect ecologically important hosts. These results are consistent with the view that the viral shunt and shuttle functions at a large scale and further imply that viruses likely act in this process in a way dependent on their hosts and ecosystem dynamics

    Predicting global distributions of eukaryotic plankton communities from satellite data

    Get PDF
    プランクトンを宇宙から観測する --衛星データを入力データとする海洋真核微生物群集予測モデルの開発--. 京都大学プレスリリース. 2023-10-19.Satellite remote sensing is a powerful tool to monitor the global dynamics of marine plankton. Previous research has focused on developing models to predict the size or taxonomic groups of phytoplankton. Here, we present an approach to identify community types from a global plankton network that includes phytoplankton and heterotrophic protists and to predict their biogeography using global satellite observations. Six plankton community types were identified from a co-occurrence network inferred using a novel rDNA 18 S V4 planetary-scale eukaryotic metabarcoding dataset. Machine learning techniques were then applied to construct a model that predicted these community types from satellite data. The model showed an overall 67% accuracy in the prediction of the community types. The prediction using 17 satellite-derived parameters showed better performance than that using only temperature and/or the concentration of chlorophyll a. The constructed model predicted the global spatiotemporal distribution of community types over 19 years. The predicted distributions exhibited strong seasonal changes in community types in the subarctic–subtropical boundary regions, which were consistent with previous field observations. The model also identified the long-term trends in the distribution of community types, which suggested responses to ocean warming
    corecore