22 research outputs found

    CdPd sulfide heterostructured nanoparticles with metal sulfide seed-dependent morphologies

    Get PDF
    Seed-mediated growth synthesis has provided us with anisotropically phase-segregated CdPd sulfide heterostructured nanoparticles with seed-dependent morphologies and crystal structures

    Design and baseline characteristics of the finerenone in reducing cardiovascular mortality and morbidity in diabetic kidney disease trial

    Get PDF
    Background: Among people with diabetes, those with kidney disease have exceptionally high rates of cardiovascular (CV) morbidity and mortality and progression of their underlying kidney disease. Finerenone is a novel, nonsteroidal, selective mineralocorticoid receptor antagonist that has shown to reduce albuminuria in type 2 diabetes (T2D) patients with chronic kidney disease (CKD) while revealing only a low risk of hyperkalemia. However, the effect of finerenone on CV and renal outcomes has not yet been investigated in long-term trials. Patients and Methods: The Finerenone in Reducing CV Mortality and Morbidity in Diabetic Kidney Disease (FIGARO-DKD) trial aims to assess the efficacy and safety of finerenone compared to placebo at reducing clinically important CV and renal outcomes in T2D patients with CKD. FIGARO-DKD is a randomized, double-blind, placebo-controlled, parallel-group, event-driven trial running in 47 countries with an expected duration of approximately 6 years. FIGARO-DKD randomized 7,437 patients with an estimated glomerular filtration rate >= 25 mL/min/1.73 m(2) and albuminuria (urinary albumin-to-creatinine ratio >= 30 to <= 5,000 mg/g). The study has at least 90% power to detect a 20% reduction in the risk of the primary outcome (overall two-sided significance level alpha = 0.05), the composite of time to first occurrence of CV death, nonfatal myocardial infarction, nonfatal stroke, or hospitalization for heart failure. Conclusions: FIGARO-DKD will determine whether an optimally treated cohort of T2D patients with CKD at high risk of CV and renal events will experience cardiorenal benefits with the addition of finerenone to their treatment regimen. Trial Registration: EudraCT number: 2015-000950-39; ClinicalTrials.gov identifier: NCT02545049

    Spontaneous Patterning of Electronic Circuits by Surface Selective Deposition

    No full text

    Crystal structure-selective formation and carrier dynamics of type-II CdS–Cu31S16 heterodimers

    Get PDF
    Anisotropically phase-segregated CdS–Cu[31]S[16] heterodimers with type-II band alignment were spontaneously formed by selective growth of monoclinic Cu[31]S[16] phases on preformed hexagonal CdS phases. The photo-induced carrier dynamics of the heterodimer was investigated by fluorescence and transient absorption measurements

    Organic thin-film transistors with over 10 cm2/Vs mobility through low-temperature solution coating

    No full text
    Recent studies on organic thin-film transistors (OTFTs) have reported high mobility values, but many of them showed non-ideal current–voltage characteristics that could lead to the overestimation of the mobility values. In this study, the non-ideal transistor behavior was briefly investigated by considering the effect of charge injection, and a method of overcoming the effect was developed. Correspondingly, various charge injection layers were developed, and their effects on the modification of metal contacts, including work function tuning and interfacial doping, were studied. The materials that had been coated formed a good metal-semiconductor interface through fine manipulation in the wetting and dewetting of the selected liquid. With such electrodes, the OTFTs were fabricated at room temperature and exhibited almost ideal transistor behavior in terms of the current–voltage characteristics, featuring high (over 10 cm2/Vs) field-effect mobility

    Electroconductive π-Junction Au Nanoparticles

    Get PDF
    The fabrication of printed electronic circuits using solution-based electroconductive materials at low temperature is essential for the realization of modern printed electronics including transistors, photovoltaic cells, and light-emitting devices. Despite the progress in the field of semiconductor solution materials, reliable electrodes are always fabricated by a vacuum deposition process resulting in only partially solution-processed devices. In this paper, we show that planar phthalocyanine-conjugated Au nanoparticles (NPs) significantly improve the interparticle-carrier-transport properties. The deposition of a solution of the Au NPs under ambient conditions results in an electroconductive metallic thin film without further post-treatment. Maximum conductivity reaches >6600 S cm−1 and the conductivity remains unchanged for at least 1 year under ambient conditions. The all-solution-processed organic field-effect transistor (OFET) fabricated under ambient conditions exhibits mobility values as high as 2 cm2 V−1 s−1, the value of which is comparable to OFET devices having vacuum-deposited Au electrodes
    corecore