115 research outputs found
Containing costs in public sector hospitals - a strategy for the future. Lessons from a large teaching hospital
Escalating costs of providing health care are cause for worldwide concern. In South Africa there is increasing concern about expenditure in the public and the private health care sectors. Although public sector expenditure has increased in per capita terms over the past 2 decades, at the micro-level comparison of expenditure over a 14-year period in one major teaching hospital region indicates that, despite increasing complexity and sophistication, real costs have not escalated at a greater rate than the consumer price index, if extraordinary factors are discounted. The development and utilisation of productivity and performance indicators are reviewed and some mechanisms for containing costs in public hospitals are discussed. These include formalised strategic planning and allocation of resources, rationalisation and reorganisation of services, improved productivity and utilisation of scarce health manpower, improved accounting and management information systems, and the development and use of measures of outcome. Concern is expressed regarding excessive quantification of costs and efficiency to the detriment of health care in general
Renormalization group parameter evolution of the minimal supersymmetric standard model with R-parity violation
A comparison of spectra obtained using the 1-loop MSSM and 2-loop R-parity
violating MSSM renormalization group equations is presented. Influence of
higher loop corrections and R-parity violating terms is discussed. Some
numerical constraints on the R-parity violating parameters are also given.Comment: 4 pages, 1 figure, using RevTE
Theory-Motivated Benchmark Models and Superpartners at the Tevatron
Recently published benchmark models have contained rather heavy
superpartners. To test the robustness of this result, several benchmark models
have been constructed based on theoretically well-motivated approaches,
particularly string-based ones. These include variations on anomaly and
gauge-mediated models, as well as gravity mediation. The resulting spectra
often have light gauginos that are produced in significant quantities at the
Tevatron collider, or will be at a 500 GeV linear collider. The signatures also
provide interesting challenges for the LHC. In addition, these models usually
account for electroweak symmetry breaking with relatively less fine-tuning than
previous benchmark models.Comment: 44 pages, 4 figures; some typos corrected. Revisions reflect
published versio
CP and Lepton-Number Violation in GUT Neutrino Models with Abelian Flavour Symmetries
We study the possible magnitudes of CP and lepton-number-violating quantities
in specific GUT models of massive neutrinos with different Abelian flavour
groups, taking into account experimental constraints and requiring successful
leptogenesis. We discuss SU(5) and flipped SU(5) models that are consistent
with the present data on neutrino mixing and upper limits on the violations of
charged-lepton flavours and explore their predictions for the CP-violating
oscillation and Majorana phases. In particular, we discuss string-derived
flipped SU(5) models with selection rules that modify the GUT structure and
provide additional constraints on the operators, which are able to account for
the magnitudes of some of the coefficients that are often set as arbitrary
parameters in generic Abelian models.Comment: 30 pages, 6 figure
Supersymmetry and the positron excess in cosmic rays
Recently the HEAT balloon experiment has confirmed an excess of high-energy
positrons in cosmic rays. They could come from annihilation of dark matter in
the galactic halo. We discuss expectations for the positron signal in cosmic
rays from the lightest superpartner. The simplest interpretations are
incompatible with the size and shape of the excess if the relic LSPs evolved
from thermal equilbrium. Non-thermal histories can describe a sufficient
positron rate. Reproducing the energy spectrum is more challenging, but perhaps
possible. The resulting light superpartner spectrum is compatible with collider
physics, the muon anomalous magnetic moment, Z-pole electroweak data, and other
dark matter searches.Comment: 4 pages, 2 figures, references added, minor wording change
Non-universal gaugino masses: a signal-based analysis for the Large Hadron Collider
We discuss the signals at the Large Hadron Collider (LHC) for scenarios with
non-universal gaugino masses in supersymmetric (SUSY) theories. We perform a
multichannel analysis, and consider the ratios of event rates in different
channels such as , - and -
, as well as and final states
together with . Low-energy SUSY spectra corresponding to
high-scale gaugino non-universality arising from different breaking schemes of
SU(5) as well as SO(10) Grand Unified (GUT) SUSY models are considered, with
both degenerate low-energy sfermion masses and those arising from a
supergravity scenario. We present the numerical predictions over a wide range
of the parameter space using the event generator {\tt Pythia}, specifying the
event selection criteria and pointing out regions where signals are likely to
be beset with backgrounds. Certain broad features emerge from the study, which
may be useful in identifying the signatures of different GUT breaking schemes
and distinguishing them from a situation with a universal gaugino mass at high
scale. The absolute values of the predicted event rates for different scenarios
are presented together with the various event ratios, so that these can also be
used whenever necessary.Comment: 54 pages, 18 figure
The MSSM fine tuning problem: a way out
As is well known, electroweak breaking in the MSSM requires substantial
fine-tuning, mainly due to the smallness of the tree-level Higgs quartic
coupling, lambda_tree. Hence the fine tuning is efficiently reduced in
supersymmetric models with larger lambda_tree, as happens naturally when the
breaking of SUSY occurs at a low scale (not far from the TeV). We show, in
general and with specific examples, that a dramatic improvement of the fine
tuning (so that there is virtually no fine-tuning) is indeed a very common
feature of these scenarios for wide ranges of tan(beta) and the Higgs mass
(which can be as large as several hundred GeV if desired, but this is not
necessary). The supersymmetric flavour problems are also drastically improved
due to the absence of RG cross-talk between soft mass parameters.Comment: 28 pages, 9 PS figures, LaTeX Published versio
Density and well width dependences of the effective mass of twodimensional holes in (100) GaAs quantum wells measured by cyclotron resonance at microwave frequencies
Cyclotron resonance at microwave frequencies is used to measure the band mass
(m_b) of the two-dimensional holes (2DH's) in carbon-doped (100)
GaAs/AlxGa1-xAs heterostructures. The measured m_b shows strong dependences on
both the 2DH density(p) and the GaAs quantum well width (W). For a fixed W, in
the density range (0.4x10^11 to 1.1x10^11 cm^-2) studied here, m_b increases
with p, consistent with previous studies of the 2DHs on the (311)A surface. For
a fixed p = 1.1x10^11 cm^-2, mb increases from 0.22 m_e at W = 10 nm to 0.50
m_e at W = 30 nm, and saturates around 0.51 m_e for W > 30 nm.Comment: to appear in Solid State Communication
Relic Neutralino Densities and Detection Rates with Nonuniversal Gaugino Masses
We extend previous analyses on the interplay between nonuniversalities in the
gaugino mass sector and the thermal relic densities of LSP neutralinos, in
particular to the case of moderate to large tan beta. We introduce a set of
parameters that generalizes the standard unified scenario to cover the complete
allowed parameter space in the gaugino mass sector. We discuss the physical
significance of the cosmologically preferred degree of degeneracy between
charginos and the LSP and study the effect this degree of degeneracy has on the
prospects for direct detection of relic neutralinos in the next round of dark
matter detection experiments. Lastly, we compare the fine tuning required to
achieve a satisfactory relic density with the case of universal gaugino masses,
as in minimal supergravity, and find it to be of a similar magnitude. The
sensitivity of quantifiable measures of fine-tuning on such factors as the
gluino mass and top and bottom masses is also examined.Comment: Uses RevTeX; 14 pages, 16 figure
Neutralino Dark Matter from MSSM Flat Directions in light of WMAP Result
The minimal supersymmetric standard model (MSSM) has a truly supersymmetric
way to explain both the baryon asymmetry and cold dark matter in the present
Universe, that is, ``Affleck-Dine baryo/DM-genesis.'' The associated late-time
decay of Q-balls directly connects the origins of the baryon asymmetry and dark
matter, and also predicts a specific nature of the LSP. In this paper, we
investigate the prospects for indirect detection of these dark matter
candidates observing high energy neutrino flux from the Sun, and hard positron
flux from the halo. We also update the previous analysis of the direct
detection in hep-ph/0205044 by implementing the recent result from WMAP
satellite.Comment: 32 pages, including 40 figure
- …