47 research outputs found

    Gender Issues in Involuntary Resettlement due to Dam Construction: “Dam Brides” and the Tokuyama Dam in Japan

    Get PDF
    Many dams have been constructed around the world. Consequently, a great number of people have been displaced from their homelands by dam construction. These developments have tended to overlook gender differences. Thus, the resettlement process may exacerbate existing gender disparities in the communities affected by the project. Gender issues have seldom been studied in involuntary resettlements due to dam construction projects in Japan. This study was conducted about the Tokuyama dam, which has the largest storage capacity in Japan. Previous studies implicitly assume that all of the displaced people were originally from the submerged old Tokuyama village. However, our study revealed that some resettlers were in fact from outside of the old Tokuyama village. These were women called “dam brides” because they married men who were originally from Tokuyama, in the period immediately prior to the dam construction and subsequent resettlement. The men mostly met these “dam brides” in cities where they worked as seasonal workers in the winter. Knowing that the men would secure hefty compensation by leaving their homes in the old Tokuyama village, the “dam brides” decided to get married. They lived in the old Tokuyama village for only a few years before relocating to areas which were more “urban” than Tokuyama. These “dam brides,” originally from cities, behaved differently after relocation than those from Tokuyama. They were keener to establish amicable relations with the people in the host community and were thus pivotal in accelerating the merging of the resettlers into their host community

    The inflammatory microenvironment that promotes gastrointestinal cancer development and invasion.

    Get PDF
    金沢大学新学術創成研究機構ナノ生命科学研究所Accumulating evidence has indicated that the inflammatory response is important for tumor promotion. However, the mechanisms underlying the induction of the inflammatory response in cancer tissues and how it promotes tumorigenesis remain poorly understood. We constructed several mouse models that develop inflammation-associated gastric and intestinal tumors and examined the in vivo mechanisms of tumorigenesis. Of note, the activation of cyclooxygenase-2 (COX-2)/prostaglandin E2 (PGE2) pathway and Toll-like receptor (TLR)/MyD88 signaling cooperatively induced the generation of an inflammatory microenvironment, which is required for early-stage tumorigenesis. The inflammatory response in the stroma induces TNF-α signaling in tumor cells, and the NOX1/ROS signaling pathway is activated downstream. In addition, the inflammatory pathway induces the expression of TLR2 in tumor epithelial cells. Both the NOX1/ROS and TLR2 pathways in tumor cells contribute to the acquisition and maintenance of stemness, which is an important tumor-promoting mechanism stimulated by inflammation. We also found that inflammation promotes malignant processes, like submucosal invasion, of TGF-β signaling-suppressed tumor cells through the activation of MMP2 protease. Moreover, we showed that mutant p53 induces innate immune and inflammatory signaling in the tumor stroma by a gain-of-function mechanism of mutant p53, which may explain the “cancer-induced inflammation” mechanism. These results indicate that the regulation of the inflammatory microenvironment via the inhibition of the COX-2/PGE2 and TLR/MyD88 pathways in combination will be an effective preventive or therapeutic strategy against gastrointestinal cancer development and malignant progression, especially those carrying p53 gain-of-function mutations. © 2018 Elsevier Ltd.Embargo Period 12 month

    Effective elimination of water-borne <em>Escherichia coli </em>using archaeal poly-<span style="font-family: Symbol">g</span>-glutamate-based materials

    No full text
    Escherichia coli is used worldwide as a fecal indicator species to assess the quality of (drinking) water. Active carbons are used for the removal of chemical pollutants, but are ineffective in the inactivation of water-borne pathogens such as E. coli. Herein, we developed poly-g-glutamate-ion complex-coated active carbons (PGAIC-AC) and examined their ability to eliminate E. coli from a laboratory model of water pollution (~ 2.0 × 104 CFU/mL) at room temperature. The results showed that E. coli was virtually eliminated when using PGAIC-AC as a dispersant. In fact, the log reduction values were estimated to be &gt; 1.19. In this study, we further constructed simple but effective bacteria-elimination system with a PGAIC-AC–embedded column. This PGAIC-AC system can be utilized to purify water when no electricity or specialized equipment is available

    Adiponectin Fractions Influence the Development of Posttransplant Diabetes Mellitus and Cardiovascular Disease in Japanese Renal Transplant Recipients.

    No full text
    A few studies have investigated the role of adiponectin fraction for cardiovascular disease (CVD) in RTx recipients.We studied 57 adult subjects (39 males, 18 females; 10 cadaveric donors) with at least three years of allograft survival (median 251 months). We examined clinical backgrounds such as treated drugs, blood pressure (BP, mmHg), body mass index (BMI), and blood chemistry including cholesterol (total, LDL-C, HDL-C), glucose, glycated hemoglobin (HbA1c), and serum high and low-molecular-weight (HMW/LMW) ADPN fractions with regard to the associations of the visceral and subcutaneous fat areas on CT scan. We also analyzed the associations of CVD and post-transplant diabetes (PTDM) with ADPN fractions and the fat areas.The visceral fat area was inversely correlated with serum HMW and LMW ADPN levels and HMW ADPN ratio (r = -0.400, p = 0.002 and r = -0.296, p = 0.025 and r = -0.444, p<0.001, respectively). Furthermore, the visceral fat area was positively with the LMW ADPN ratio (r = 0.467, p<0.001), but no significant correlation was noted between the subcutaneous fat area and the ADPN ratio. On multiple regression analysis, eGFR and the visceral fat area were significant reducing factors of HMW ADPN levels, and the alteration of eGFR was identified as an increasing factor of HMW ADPN levels. Patients with CVD had larger visceral fat area (p = 0.004), lower HMW ADPN ratio (p = 0.022) and higher LMW ADPN ratio (p = 0.049). In addition, the higher HMW ADPN ratio and statin treatment were identified as reducing factors of the development of CVD, but the LDL-C level was an aggravating factor. Moreover, the higher LMW ADPN ratio and the visceral fat area were aggravating factors of PTDM.Even in Japanese renal transplant recipients, visceral fat area and ADPN fractions were significant factors for the development of both CVD and PTDM

    Comprehensive Identification of Substrates for F-box Proteins by Differential Proteomics Analysis

    Get PDF
    Although elucidation of enzyme–substrate relations is fundamental to the advancement of biology, universal approaches to the identification of substrates for a given enzyme have not been established. It is especially difficult to identify substrates for ubiquitin ligases, given that most such substrates are immediately ubiquitylated and degraded as a result of their association with the enzyme. We here describe the development of a new approach, DiPIUS (differential proteomics-based identification of ubiquitylation substrates), to the discovery of substrates for ubiquitin ligases. We applied DiPIUS to Fbxw7α, Skp2, and Fbxl5, three of the most well-characterized F-box proteins, and identified candidate substrates including previously known targets. DiPIUS is thus a powerful tool for unbiased and comprehensive screening for substrates of ubiquitin ligases

    Comprehensive Identification of Substrates for F-box Proteins by Differential Proteomics Analysis

    Get PDF
    Although elucidation of enzyme–substrate relations is fundamental to the advancement of biology, universal approaches to the identification of substrates for a given enzyme have not been established. It is especially difficult to identify substrates for ubiquitin ligases, given that most such substrates are immediately ubiquitylated and degraded as a result of their association with the enzyme. We here describe the development of a new approach, DiPIUS (differential proteomics-based identification of ubiquitylation substrates), to the discovery of substrates for ubiquitin ligases. We applied DiPIUS to Fbxw7α, Skp2, and Fbxl5, three of the most well-characterized F-box proteins, and identified candidate substrates including previously known targets. DiPIUS is thus a powerful tool for unbiased and comprehensive screening for substrates of ubiquitin ligases

    Comprehensive Identification of Substrates for F-box Proteins by Differential Proteomics Analysis

    No full text
    Although elucidation of enzyme–substrate relations is fundamental to the advancement of biology, universal approaches to the identification of substrates for a given enzyme have not been established. It is especially difficult to identify substrates for ubiquitin ligases, given that most such substrates are immediately ubiquitylated and degraded as a result of their association with the enzyme. We here describe the development of a new approach, DiPIUS (differential proteomics-based identification of ubiquitylation substrates), to the discovery of substrates for ubiquitin ligases. We applied DiPIUS to Fbxw7α, Skp2, and Fbxl5, three of the most well-characterized F-box proteins, and identified candidate substrates including previously known targets. DiPIUS is thus a powerful tool for unbiased and comprehensive screening for substrates of ubiquitin ligases

    A stepwise and digital pattern of RSK phosphorylation determines the outcome of thymic selection

    No full text
    Summary: Developing CD4+CD8+ double-positive (DP) thymocytes with randomly generated T cell receptors (TCRs) undergo positive (maturation) or negative (apoptosis) selection on the basis of the strength of TCR stimulation. Selection fate is determined by engagement of TCR ligands with a subtle difference in affinity, but the molecular details of TCR signaling leading to the different selection outcomes have remained unclear. We performed phosphoproteome analysis of DP thymocytes and found that p90 ribosomal protein kinase (RSK) phosphorylation at Thr562 was induced specifically by high-affinity peptide ligands. Such phosphorylation of RSK triggered its translocation to the nucleus, where it phosphorylated the nuclear receptor Nur77 and thereby promoted its mitochondrial translocation for apoptosis induction. Inhibition of RSK activity protected DP thymocytes from antigen-induced cell death. We propose that RSK phosphorylation constitutes a mechanism by which DP thymocytes generate a stepwise and binary signal in response to exposure to TCR ligands with a graded affinity

    Circulating CTRP9 correlates with the prevention of aortic calcification in renal allograft recipients.

    No full text
    BACKGROUND:Cardiovascular disease (CVD) due to atherosclerosis is a major cause of death in renal allograft recipients. Recently, C1q/TNF-α related protein-9 (CTRP9), which is a paralog of adiponectin (ADPN), has been suggested to be related to the prevention of atherosclerosis and the occurrence of CVD, but this relationship has not been confirmed in renal allograft recipients. SUBJECTS AND METHODS:The relationships among the serum CTRP9 concentration, serum ADPN concentration, and vascular calcification were investigated in 50 kidney transplantation recipients at our hospital. Calcification of the abdominal aorta was evaluated according to the aortic calcification area index (ACAI) calculated from CT images. Changes in the serum CTRP9 and ADPN fractions and ACAI were examined for 8 years. In addition, the expression of CTRP9 and ADPN and their respective receptors AdipoR1 and R2 in muscular arteries of the kidney was examined by immunofluorescence. RESULTS:In renal allograft recipients, the serum CTRP9 concentration at the start of the observation was not significant correlated with eGFR or serum high-molecular-weight (HMW)-ADPN concentration (rS = -0.009, p = 0.950; rS = -0.226, p = 0.114, respectively). However, the change in the serum CTRP9 concentration was positively correlated with the change in the serum HMW-ADPN concentration (rS = 0.315, p = 0.026) and negatively correlated with the change in ACAI (rS = -0.367, p = 0.009). Multiple regression analysis revealed that the serum HMW-ADPN concentration was a significant positive factor for the change in the serum CTRP9 concentration. Moreover, for ACAI, an increase in the serum CTRP9 concentration was an improving factor, but aging was an exacerbating factor. Furthermore, colocalization of CTRP9 and AdipoR1 was noted in the luminal side of intra-renal arterial intima. CONCLUSION:In renal allograft recipients, both CTRP9 and HMW-ADPN were suggested to prevent the progression of aortic calcification through AdipoR1
    corecore