22 research outputs found
Extra corporal membrane oxygenation in general thoracic surgery: a new single veno-venous cannulation
Extracorporeal membrane oxygenation (ECMO) is used in severe respiratory failure to maintain adequate gas exchange. So far, this technique has not been commonly used in general thoracic surgery. We present a case using ECMO for peri-operative airway management for pulmonary resection, using a novel single-site, internal jugular, veno-venous ECMO cannula
The Hyades Kinematical Structure with Gaia Era
268-273In this work, we have improved the Hyades members with crossmatch between Hipparcos and the recent Gaia EDR3 source,
the obtained members with highly probable are about 186 candidates. Considering the classical convergent point and depending on
proper motions and radial velocities, we have computed the apex position A, D 93. 36 0. 046, 7. 43 0. 713
which is in line with others. The internal structural parameters of the Hyades open cluster are demonstrated here with space spatial
velocities; i.e., , V, V; km s (-5.97±0.41, 45.54±6.75, 5.52±0.43) and , V, W ; km s (-42.11±6.50, -19.09±4.37,
-1.32±0.44) and on basis of matrix elements μ, the Velocity Ellipsoid Parameters were achieved, e.g., λ, λ, λ; km s
2137.36 23.12, 6.06 0.41, 2.53 0.63 and σ, σ, σ; km s 46.23 6.80, 2.47 0.64, 1.59 0.80.
For the observational quantities, we have deduced a correlation coefficient of about 0.83 for the kinematical property of
proper motions on both sides μ cos δ , μ; mas yr and the physical property with the angular distances λ from the
vertex, and those prove that the attributes are completely related linearly
Global age-sex-specific mortality, life expectancy, and population estimates in 204 countries and territories and 811 subnational locations, 1950–2021, and the impact of the COVID-19 pandemic: a comprehensive demographic analysis for the Global Burden of Disease Study 2021
Background: Estimates of demographic metrics are crucial to assess levels and trends of population health outcomes. The profound impact of the COVID-19 pandemic on populations worldwide has underscored the need for timely estimates to understand this unprecedented event within the context of long-term population health trends. The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2021 provides new demographic estimates for 204 countries and territories and 811 additional subnational locations from 1950 to 2021, with a particular emphasis on changes in mortality and life expectancy that occurred during the 2020–21 COVID-19 pandemic period. Methods: 22 223 data sources from vital registration, sample registration, surveys, censuses, and other sources were used to estimate mortality, with a subset of these sources used exclusively to estimate excess mortality due to the COVID-19 pandemic. 2026 data sources were used for population estimation. Additional sources were used to estimate migration; the effects of the HIV epidemic; and demographic discontinuities due to conflicts, famines, natural disasters, and pandemics, which are used as inputs for estimating mortality and population. Spatiotemporal Gaussian process regression (ST-GPR) was used to generate under-5 mortality rates, which synthesised 30 763 location-years of vital registration and sample registration data, 1365 surveys and censuses, and 80 other sources. ST-GPR was also used to estimate adult mortality (between ages 15 and 59 years) based on information from 31 642 location-years of vital registration and sample registration data, 355 surveys and censuses, and 24 other sources. Estimates of child and adult mortality rates were then used to generate life tables with a relational model life table system. For countries with large HIV epidemics, life tables were adjusted using independent estimates of HIV-specific mortality generated via an epidemiological analysis of HIV prevalence surveys, antenatal clinic serosurveillance, and other data sources. Excess mortality due to the COVID-19 pandemic in 2020 and 2021 was determined by subtracting observed all-cause mortality (adjusted for late registration and mortality anomalies) from the mortality expected in the absence of the pandemic. Expected mortality was calculated based on historical trends using an ensemble of models. In location-years where all-cause mortality data were unavailable, we estimated excess mortality rates using a regression model with covariates pertaining to the pandemic. Population size was computed using a Bayesian hierarchical cohort component model. Life expectancy was calculated using age-specific mortality rates and standard demographic methods. Uncertainty intervals (UIs) were calculated for every metric using the 25th and 975th ordered values from a 1000-draw posterior distribution. Findings: Global all-cause mortality followed two distinct patterns over the study period: age-standardised mortality rates declined between 1950 and 2019 (a 62·8% [95% UI 60·5–65·1] decline), and increased during the COVID-19 pandemic period (2020–21; 5·1% [0·9–9·6] increase). In contrast with the overall reverse in mortality trends during the pandemic period, child mortality continued to decline, with 4·66 million (3·98–5·50) global deaths in children younger than 5 years in 2021 compared with 5·21 million (4·50–6·01) in 2019. An estimated 131 million (126–137) people died globally from all causes in 2020 and 2021 combined, of which 15·9 million (14·7–17·2) were due to the COVID-19 pandemic (measured by excess mortality, which includes deaths directly due to SARS-CoV-2 infection and those indirectly due to other social, economic, or behavioural changes associated with the pandemic). Excess mortality rates exceeded 150 deaths per 100 000 population during at least one year of the pandemic in 80 countries and territories, whereas 20 nations had a negative excess mortality rate in 2020 or 2021, indicating that all-cause mortality in these countries was lower during the pandemic than expected based on historical trends. Between 1950 and 2021, global life expectancy at birth increased by 22·7 years (20·8–24·8), from 49·0 years (46·7–51·3) to 71·7 years (70·9–72·5). Global life expectancy at birth declined by 1·6 years (1·0–2·2) between 2019 and 2021, reversing historical trends. An increase in life expectancy was only observed in 32 (15·7%) of 204 countries and territories between 2019 and 2021. The global population reached 7·89 billion (7·67–8·13) people in 2021, by which time 56 of 204 countries and territories had peaked and subsequently populations have declined. The largest proportion of population growth between 2020 and 2021 was in sub-Saharan Africa (39·5% [28·4–52·7]) and south Asia (26·3% [9·0–44·7]). From 2000 to 2021, the ratio of the population aged 65 years and older to the population aged younger than 15 years increased in 188 (92·2%) of 204 nations. Interpretation: Global adult mortality rates markedly increased during the COVID-19 pandemic in 2020 and 2021, reversing past decreasing trends, while child mortality rates continued to decline, albeit more slowly than in earlier years. Although COVID-19 had a substantial impact on many demographic indicators during the first 2 years of the pandemic, overall global health progress over the 72 years evaluated has been profound, with considerable improvements in mortality and life expectancy. Additionally, we observed a deceleration of global population growth since 2017, despite steady or increasing growth in lower-income countries, combined with a continued global shift of population age structures towards older ages. These demographic changes will likely present future challenges to health systems, economies, and societies. The comprehensive demographic estimates reported here will enable researchers, policy makers, health practitioners, and other key stakeholders to better understand and address the profound changes that have occurred in the global health landscape following the first 2 years of the COVID-19 pandemic, and longer-term trends beyond the pandemic
Global age-sex-specific mortality, life expectancy, and population estimates in 204 countries and territories and 811 subnational locations, 1950–2021, and the impact of the COVID-19 pandemic: a comprehensive demographic analysis for the Global Burden of Disease Study 2021
BACKGROUND: Estimates of demographic metrics are crucial to assess levels and trends of population health outcomes. The profound impact of the COVID-19 pandemic on populations worldwide has underscored the need for timely estimates to understand this unprecedented event within the context of long-term population health trends. The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2021 provides new demographic estimates for 204 countries and territories and 811 additional subnational locations from 1950 to 2021, with a particular emphasis on changes in mortality and life expectancy that occurred during the 2020–21 COVID-19 pandemic period. METHODS: 22 223 data sources from vital registration, sample registration, surveys, censuses, and other sources were used to estimate mortality, with a subset of these sources used exclusively to estimate excess mortality due to the COVID-19 pandemic. 2026 data sources were used for population estimation. Additional sources were used to estimate migration; the effects of the HIV epidemic; and demographic discontinuities due to conflicts, famines, natural disasters, and pandemics, which are used as inputs for estimating mortality and population. Spatiotemporal Gaussian process regression (ST-GPR) was used to generate under-5 mortality rates, which synthesised 30 763 location-years of vital registration and sample registration data, 1365 surveys and censuses, and 80 other sources. ST-GPR was also used to estimate adult mortality (between ages 15 and 59 years) based on information from 31 642 location-years of vital registration and sample registration data, 355 surveys and censuses, and 24 other sources. Estimates of child and adult mortality rates were then used to generate life tables with a relational model life table system. For countries with large HIV epidemics, life tables were adjusted using independent estimates of HIV-specific mortality generated via an epidemiological analysis of HIV prevalence surveys, antenatal clinic serosurveillance, and other data sources. Excess mortality due to the COVID-19 pandemic in 2020 and 2021 was determined by subtracting observed all-cause mortality (adjusted for late registration and mortality anomalies) from the mortality expected in the absence of the pandemic. Expected mortality was calculated based on historical trends using an ensemble of models. In location-years where all-cause mortality data were unavailable, we estimated excess mortality rates using a regression model with covariates pertaining to the pandemic. Population size was computed using a Bayesian hierarchical cohort component model. Life expectancy was calculated using age-specific mortality rates and standard demographic methods. Uncertainty intervals (UIs) were calculated for every metric using the 25th and 975th ordered values from a 1000-draw posterior distribution. FINDINGS: Global all-cause mortality followed two distinct patterns over the study period: age-standardised mortality rates declined between 1950 and 2019 (a 62·8% [95% UI 60·5–65·1] decline), and increased during the COVID-19 pandemic period (2020–21; 5·1% [0·9–9·6] increase). In contrast with the overall reverse in mortality trends during the pandemic period, child mortality continued to decline, with 4·66 million (3·98–5·50) global deaths in children younger than 5 years in 2021 compared with 5·21 million (4·50–6·01) in 2019. An estimated 131 million (126–137) people died globally from all causes in 2020 and 2021 combined, of which 15·9 million (14·7–17·2) were due to the COVID-19 pandemic (measured by excess mortality, which includes deaths directly due to SARS-CoV-2 infection and those indirectly due to other social, economic, or behavioural changes associated with the pandemic). Excess mortality rates exceeded 150 deaths per 100 000 population during at least one year of the pandemic in 80 countries and territories, whereas 20 nations had a negative excess mortality rate in 2020 or 2021, indicating that all-cause mortality in these countries was lower during the pandemic than expected based on historical trends. Between 1950 and 2021, global life expectancy at birth increased by 22·7 years (20·8–24·8), from 49·0 years (46·7–51·3) to 71·7 years (70·9–72·5). Global life expectancy at birth declined by 1·6 years (1·0–2·2) between 2019 and 2021, reversing historical trends. An increase in life expectancy was only observed in 32 (15·7%) of 204 countries and territories between 2019 and 2021. The global population reached 7·89 billion (7·67–8·13) people in 2021, by which time 56 of 204 countries and territories had peaked and subsequently populations have declined. The largest proportion of population growth between 2020 and 2021 was in sub-Saharan Africa (39·5% [28·4–52·7]) and south Asia (26·3% [9·0–44·7]). From 2000 to 2021, the ratio of the population aged 65 years and older to the population aged younger than 15 years increased in 188 (92·2%) of 204 nations. INTERPRETATION: Global adult mortality rates markedly increased during the COVID-19 pandemic in 2020 and 2021, reversing past decreasing trends, while child mortality rates continued to decline, albeit more slowly than in earlier years. Although COVID-19 had a substantial impact on many demographic indicators during the first 2 years of the pandemic, overall global health progress over the 72 years evaluated has been profound, with considerable improvements in mortality and life expectancy. Additionally, we observed a deceleration of global population growth since 2017, despite steady or increasing growth in lower-income countries, combined with a continued global shift of population age structures towards older ages. These demographic changes will likely present future challenges to health systems, economies, and societies. The comprehensive demographic estimates reported here will enable researchers, policy makers, health practitioners, and other key stakeholders to better understand and address the profound changes that have occurred in the global health landscape following the first 2 years of the COVID-19 pandemic, and longer-term trends beyond the pandemic. FUNDING: Bill & Melinda Gates Foundation
ETUDE DE L'APOPTOSE INTRA-PULMONAIRE AU COURS DU SUIVI DES GREFFES PULMONAIRES
PARIS-BIUM (751062103) / SudocCentre Technique Livre Ens. Sup. (774682301) / SudocSudocFranceF
Novel radiomics evaluation of bone formation utilizing multimodal (SPECT/X-ray CT) in vivo imaging.
Although an extensive research is being undertaken, the ideal bone graft and evaluation method of the bone formation draw still a warranted attention. The purpose of this study was to develop a novel multimodal radiomics evaluation method, utilizing X-ray computed tomography (CT) and single photon emission computed tomography (SPECT) with Tc-99m-Methyl diphosphonate (Tc-99m-MDP) tracer. These modalities are intended to provide quantitative data concerning the mineral bone density (after evaluation it is referred to as opacity) and the osteoblast activity, at the same time. The properties of bone formation process within poly (methyl methacrylate)-based bone cement graft (PMMA) was compared to that of albumin coated, sterilized, antigen-extracted freeze-dried human bone grafts (HLBC), in caudal vertebrae (C5) of rats. The animals were scanned at 3 and 8 weeks after surgery. In both groups, the mean opacity increased, while the mean Tc-99m-MDP activity decreased. The later parameter was significant (n = 4, p = 0.002) only in HLBC group. The linear regression analysis of PMMA-treated group variables (mean opacity increase; mean Tc-99m-MDP activity decrease), revealed a negative correlation with the medium strength (r = 0.395, p = 0.605). Whereas, it showed strong positive correlation when HLBC group variables were analyzed (r = 0.772, p = 0.012). These results indicate that using HLBC grafts is advantageous in terms of the osteoblast activity and bone vascularization over PMMA cement. Using this regression analysis method, we were able to distinguish characteristics that otherwise could not be distinguished by a regular data analysis. Hence, we propose utilizing this novel method in preclinical tests, and in clinical monitoring of bone healing, in order to improve diagnosis of bone-related diseases
Causes of death in French cystic fibrosis patients: The need for improvement in transplantation referral strategies!
International audienc
The Hyades Kinematical Structure with Gaia Era
In this work, we have improved the Hyades members with crossmatch between Hipparcos and the recent Gaia EDR3 source, the obtained members with highly probable are about 186 candidates. Considering the classical convergent point and depending on proper motions and radial velocities, we have computed the apex position (A_cp,D_cp )=(〖93〗^o.36±0^o.046,7^o.43±0^o.713) which is in line with others. The internal structural parameters of the Hyades open cluster are demonstrated here with space spatial velocities; i.e., (V ̅_X,V ̅_Y,V ̅_Z; km s^(-1) )=(-5.97±0.41, 45.54±6.75, 5.52±0.43) and (U ̅,V ̅,W ̅; km s^(-1) )= (-42.11±6.50, -19.09±4.37, -1.32±0.44) and on basis of matrix elements (μ_ij ), the Velocity Ellipsoid Parameters were achieved, e.g., (λ_1,λ_1,λ_1; km s^(-1) )=(2137.36 ± 23.12,6.06 ± 0.41,2.53 ± 0.63) and (σ_1,σ_1,σ_1; km s^(-1) )=(46.23 ± 6.80,2.47 ± 0.64,1.59 ± 0.80). For the observational quantities, we have deduced a correlation coefficient of about ≈0.83 for the kinematical property of proper motions on both sides (μ_α cosδ,μ_δ; mas yr^(-1) ) and the physical property with the angular distances (λ) from the vertex, and those prove that the attributes are completely related linearly