13 research outputs found

    Workflow for computational characterization of PDMS cross-linked systems

    Get PDF
    The aim of this work is to demonstrate a computational workflow for the generation of cross-linkable viscoelastic polymers and the determination of elastic and hyperelastic properties by means of all-atoms classical molecular dynamics simulations, using polydimethylsiloxane (PDMS) as an example. To improve the computational efficiency of the workflow, a phenomenological description of the cross-linking process is chosen instead of a quantum mechanical description of the cross-linking mechanism. The structures produced differ in their conversion degree of cross-linking (cdc) of 60, 70, and 80 percent and their quantity ratio between polymer chains and cross-linking units of 2 to 1 and 5 to 1. In order to exclude finite size effects of the molecular systems as much as possible, large systems of about 40,000 atoms are considered. Furthermore, for each possible configuration from the combination of cdc and the ratio of polymer chains to cross-linking units, six structures different from each other are used. Tensile and compression tests are performed to determine mechanical properties. A dependence of stresses in the deformation direction on strain rate is found for strain rates 10 7 , 10 8 , and 10 9 1/s. As the cdc increases, an increase in the stress values is observed in the tensile tests. To determine the viscoelastic material properties, relaxation tests are performed following the tensile tests. Thereby, the determined relaxed stresses after the tensile test rise with the increase of the cdc. Furthermore, no large stress deviations, .34 MPa maximum, between structures differing by chain to linker ratio are observed with the Ogden model. The computational workflow shows that classical all-atom molecular dynamics simulations can be a suitable method for structure generation and subsequent characterization of elastic and hyperelastic properties of cross-linked polymers

    Literaturrundschau

    Get PDF
    Kloock: Von der Schrift- zur Bild(schirm)kultur. Analyse aktueller MedientheorienPüttmann: Auf Vermittler angewiesen. Wie entsteht öffentliche Meinung über die KircheLiteratur zur kirchlichen Öffentlichkeitsarbeit. Eine Kommentierung derzeit erhältlicher BücherDorni Eberts: Redaktionshandbuch Katholische Kirche. Zum Nachschlagen und NachdruckenKURZBESPRECHUNGENBundeszentrale für politische Bildung: Vox Populi. Hörerinnen und Hörer haben das Wort. Reader für die Radio-PraxisOrians: Hörerbeteiligung im Radio. Eine Fallstudie zu Motivation, Erwartung und Zufriedenheit von Anrufer

    Body fluid identification and assignment to donors using a targeted mRNA massively parallel sequencing approach – results of a second EUROFORGEN / EDNAP collaborative exercise

    No full text
    In a previous EUROFORGEN/EDNAP collaborative exercise, we tested two assays for targeted mRNA massively parallel sequencing for the identification of body fluids/tissues, optimized for the Illumina MiSeq/FGx and the Ion Torrent PGM/S5 platforms, respectively. The task of the second EUROFORGEN/EDNAP collaborative exercise was to analyze dried body fluid stains with two different multiplexes, the former Illumina 33plex mRNA panel for body fluid/tissue identification and a 35plex cSNP panel for assignment of body fluids/tissues to donors that was introduced in a proof-of-concept study recently. The coding region SNPs (cSNPs) are located within the body fluid specific mRNA transcripts and represent a direct link between the body fluid and the donor. We predicted the origin of the stains using a partial least squares discriminant analysis (PLS-DA) model, where most of the single source samples were correctly predicted. The mixed body fluid stains showed poorer results, however, at least one component was predicted correctly in most stains. The cSNP data demonstrated that coding region SNPs can give valuable information on linking body fluids/tissues with donors in mixed body fluid stains. However, due to the unfavorable performance of some cSNPs, the interpretation remains challenging. As a consequence, additional markers are needed to increase the discrimination power in each body fluid/tissue category

    Body fluid identification using a targeted mRNA massively parallel sequencing approach - results of a EUROFORGEN/EDNAP collaborative exercise

    Get PDF
    In a previous study we presented an assay for targeted mRNA sequencing for the identification of human body fluids, optimised for the Illumina MiSeq/FGx MPS platform. This assay, together with an additional in-house designed assay for the Ion Torrent PGM/S5 platform, was the basis for a collaborative exercise within 17 EUROFORGEN and EDNAP laboratories, in order to test the efficacy of targeted mRNA sequencing to identify body fluids. The task was to analyse the supplied dried body fluid stains and, optionally, participants' own bona fide or mock casework samples of human origin, according to specified protocols. The provided primer pools for the Illumina MiSeq/FGx and the Ion Torrent PGM/S5 platforms included 33 and 29 body fluid specific targets, respectively, to identify blood, saliva, semen, vaginal secretion, menstrual blood and skin. The results demonstrated moderate to high count values in the body fluid or tissue of interest with little to no counts in non-target body fluids. There was some inter-laboratory variability in read counts, but overall the results of the laboratories were comparable in that highly expressed markers showed high read counts and less expressed markers showed lower counts. We performed a partial least squares (PLS) analysis on the data, where blood, menstrual blood, saliva and semen markers and samples clustered well. The results of this collaborative mRNA massively parallel sequencing (MPS) exercise support targeted mRNA sequencing as a reliable body fluid identification method that could be added to the repertoire of forensic MPS panels

    Synovial fibroblasts spread rheumatoid arthritis to unaffected joints

    Full text link
    Active rheumatoid arthritis originates from few joints but subsequently affects the majority of joints. Thus far, the pathways of the progression of the disease are largely unknown. As rheumatoid arthritis synovial fibroblasts (RASFs) which can be found in RA synovium are key players in joint destruction and are able to migrate in vitro, we evaluated the potential of RASFs to spread the disease in vivo. To simulate the primary joint of origin, we implanted healthy human cartilage together with RASFs subcutaneously into severe combined immunodeficient (SCID) mice. At the contralateral flank, we implanted healthy cartilage without cells. RASFs showed an active movement to the naive cartilage via the vasculature independent of the site of application of RASFs into the SCID mouse, leading to a marked destruction of the target cartilage. These findings support the hypothesis that the characteristic clinical phenomenon of destructive arthritis spreading between joints is mediated, at least in part, by the transmigration of activated RASFs
    corecore