72 research outputs found
Recommended from our members
The exploitation of polymer based nanocomposites for additive manufacturing: a prospective review
Additive manufacturing (AM) is a well-known technology for making real three dimensional objects, based on metal, ceramic and plastic material used for various applications. The aim of this review is to explore and offer an insight in to the state of the art polymer based nanocomposites in to additive manufacturing applications. In context to this, the developing efforts and trends in nanocomposites development particularly for additive manufacturing processes were studied and summed up. The scope and limitations of nanocomposites into Stereolithography, selective laser sintering and fused deposition modeling was explored and highlighted. The review highlights widely accepted nanoparticles for range of applications including mechanical, electrical, flame retardance and crossing over into more biological with the use of polymer matrices. Acquisition of functional parts with limitations in regard to printing is highlighted. Overall, the review highlights successes, limitations and opportunities that the union of AM and polymer based nanocomposites can bring to science and technology
Early wound healing of laser in situ keratomileusis?like flaps after treatment with human corneal stromal stem cells
To use a well-established organ culture model to investigate the effects of corneal stromal stem cells on the optical and biomechanical properties of corneal wounds after laser in situ keratomileusis (LASIK)-like flap creation. School of Optometry and Vision Sciences, Cardiff University, Cardiff, Wales, United Kingdom. Experimental study. The LASIK-like flaps were produced in sheep corneas. The flap beds were treated with corneal stromal stem cells and were then replaced and allowed to heal for different periods of up to 3 weeks in organ culture. The optical transmission of the cornea, the force required to detach the flap, and the presence of myofibroblasts near the flap bed were measured.Corneal stromal stem cell-treated flap beds were statistically significantly more transparent after 3 weeks in culture than the untreated controls. At 3 weeks, the mean force necessary to detach the flap was more than twice the force required for the respective control samples. Concurrently, there were 44% activated cells immediately below the flap margin of the controls compared with 29% in the same region of the corneal stromal stem cell-treated flaps. In this system, the presence of corneal stromal stem cells at the wound margin significantly increased the adherence of LASIK-like flaps while maintaining corneal transparency. It is postulated that this is achieved by the deposition of extracellular connective tissue similar to that found in the normal cornea and by the paucity of activated keratocytes (myofibroblasts), which are known to scatter a significant amount of the incident light. No author has a financial or proprietary interest in any material or method mentioned
Effects on collagen orientation in the cornea after trephine injury
Purpose: Structural changes are well known to occur in the cornea after injury. The aim of this study was to investigate collagen orientation changes in the cornea during a short-term wound healing process.
Methods: Seven bovine corneas were injured using a penetrating 5 mm biopsy punch and were subsequently organ cultured for up to two weeks. Six uninjured corneas acted as controls. The trephine wounded samples were snap frozen in liquid nitrogen either immediately after injury (0 h) or after 1 or 2 weeks in culture. Control/uninjured samples were snap frozen on arrival (0 h) or after 1 or 2 weeks in culture. Wide angle X-ray diffraction data were collected from each cornea at the UK Synchrotron Radiation Source or at the European Synchrotron Radiation Facility. Data analysis revealed information about collagen orientation and distribution in the corneal stroma during wound healing. For histology, two trephine wounded corneas at 0 h and 1 week and one control/uninjured cornea at 0 h were fixed in 10% neutral buffered formalin and processed for wax embedding. Wax sections were subsequently counterstained with haematoxylin and eosin to observe tissue morphology and the time course of complete re-epithelialization.
Results: Immediately after injury, collagen organization was altered in a small area inside the wound but remained similar to the control/uninjured sample in the remainder of the tissue. After one week, the trephine wounded corneas showed complete re-epithelialization and evidence of swelling while collagen adopted a radial arrangement inside and outside the wound.
Conclusions: Remarkable changes in collagen fibril orientation were observed in trephine wounded corneas. Orientation changes immediately after wounding are likely to be due to the mechanical deformation of the tissue during the wounding process. However, tissue swelling and changes in collagen orientation at later stages probably reflect the processes of tissue repair. These differences will determine corneal stability and strength following trauma and possibly refractive surgery
Motions of water and solutes-Slaving versus plasticization phenomena
It is well-accepted that hydration water is crucial for the structure, dynamics, and function of proteins. However, the exact role of water for the motions and functions of proteins is still debated. Experiments have shown that protein and water dynamics are strongly coupled but with water motions occurring on a considerably faster time scale (the so-called slaving behavior). On the other hand, water also reduces the conformational entropy of proteins and thereby acts as a plasticizer of them. In this work, we analyze the dynamics (using broadband dielectric spectroscopy) of some specific non-biological water solutions in a broad concentration range to elucidate the role of water in the dynamics of the solutes. Our results demonstrate that at low water concentrations (less than 5 wt. %), the plasticization phenomenon prevails for all the materials analyzed. However, at higher water concentrations, two different scenarios can be observed: the slaving phenomenon or plasticization, depending on the solute analyzed. These results generalize the slaving phenomenon to some, but not all, non-biological solutions and allow us to analyze the key factors for observing the slaving behavior in protein solutions as well as to reshaping the slaving concept
Differential regulation of key stages in early corneal wound healing by TGF-beta isoforms and their inhibitors
PURPOSE: Inhibition of TGF-beta reduces myofibroblast differentiation and fibrosis in the cornea. Determining the actions of distinct TGF-beta isoforms and their inhibitors during early corneal wound healing is an essential step in guiding therapeutic intervention. METHODS: Bovine serum-free corneal cell and wounded organ cultures were challenged with a range of concentrations of TGF-beta1, -beta2, and -beta3; IL-10; and neutralizing human monoclonal antibodies (mAbs) against TGF-beta1 (CAT-192) or -beta2, (CAT-152). Cultures were assessed for re-epithelialization, proliferation (cell counts and cresyl violet assay), morphology (histologic examination), repopulation of the area under the wound, and myofibroblast transformation (alpha-smooth muscle actin) between 0 and 5 days. RESULTS: TGF-beta1 delayed re-epithelialization, increased repopulation of the stroma, increased keratocyte proliferation and was the only isoform to promote myofibroblast differentiation. The anti-TGF-beta1 mAb, CAT-192 promoted re-epithelialization and reduced repopulation of the stroma. Exogenous TGF-beta3 had little effect on re-epithelialization but reduced repopulation of the stroma. IL-10 promoted corneal re-epithelialization at low doses but inhibited this response at high doses. Stromal repopulation was prevented by all doses of IL-10. TGF-beta2 or the anti-TGF-beta2 mAb, CAT-152 had little effect on any repair parameter. CONCLUSIONS: The results confirm TGF-beta1 as the principal isoform in corneal wound healing and suggest that inhibition of the action of TGF-beta1 can promote corneal wound healing. Treatment with the anti-TGF-beta1 mAb CAT-192 accelerates corneal re-epithelialization but reduces cell repopulation of the stroma. The cytokines TGF-beta3 and IL-10 have opposing actions to that of TGF-beta1
The structural response of the cornea to changes in stromal hydration
The primary aim of this study was to quantify the relationship between corneal structure and hydration in humans and pigs. X-ray scattering data were collected from human and porcine corneas equilibrated with polyethylene glycol (PEG) to varying levels of hydration, to obtain measurements of collagen fibril diameter, interfibrillar spacing and intermolecular spacing. Both species showed a strong positive linear correlation between hydration and interfibrillar spacing2 and a non-linear, bi-phasic relationship between hydration and fibril diameter, whereby fibril diameter increased up to approximately physiological hydration, H = 3.0, with little change thereafter. Above H = 3.0, porcine corneas exhibited a larger fibril diameter than human corneas (p < 0.001). Intermolecular spacing also varied with hydration in a bi-phasic manner but reached a maximum value at a lower hydration (H = 1.5) than fibril diameter. Human corneas displayed a higher intermolecular spacing than porcine corneas at all hydrations (p < 0.0001). Human and porcine corneas required a similar PEG concentration to reach physiological hydration, suggesting that the total fixed charge that gives rise to the swelling pressure is the same. The difference in their structural responses to hydration can be explained by variations in molecular crosslinking and intra/interfibrillar water partitioning
Measuring the refractive index of bovine corneal stromal cells using quantitative phase imaging
The cornea is the primary refractive lens in the eye and transmits >90% of incident visible light. It has been suggested that the development of postoperative corneal haze could be due to an increase in light scattering from activated corneal stromal cells. Quiescent keratocytes are thought to produce crystallins that match the refractive index of their cytoplasm to the surrounding extracellular material, reducing the amount of light scattering. To test this, we measured the refractive index (RI) of bovine corneal stromal cells, using quantitative phase imaging of live cells in vitro, together with confocal microscopy. The RI of quiescent keratocytes (RI = 1.381 ± 0.004) matched the surrounding matrix, thus supporting the hypothesis that keratocyte cytoplasm does not scatter light in the normal cornea. We also observed that the RI drops after keratocyte activation (RI = 1.365 ± 0.003), leading to a mismatch with the surrounding intercellular matrix. Theoretical scattering models showed that this mismatch would reduce light transmission in the cornea. We conclude that corneal transparency depends on the matching of refractive indices between quiescent keratocytes and the surrounding tissue, and that after surgery or wounding, the resulting RI mismatch between the activated cells and their surrounds significantly contributes to light scattering
Assessment of Efficacy and Safety Using PPAR-Îł Agonist-Loaded Nanocarriers for Inflammatory Eye Diseases
Drug-loaded nanocarriers (NCs) are new systems that can greatly improve the delivery and targeting of drugs to specific tissues and organs. In our work, a PPAR-Îł agonist loaded into polymeric NCs was prepared, stabilized by spray-drying, and tested in vitro, ex vivo, and in vivo (animal models) to provide a safe formulation for optical anti-inflammatory treatments. The NCs were shown to be well tolerated, and no signs of irritancy or alterations of the eye properties were detected by the in vitro HET-CAM test and in vivo Draize test. Furthermore, no signs of cytotoxicity were found in the NC formulations on retinoblastoma cells (Y-79) analyzed using the alamarBlue assay, and the transmittance experiments evidenced good corneal transparency with the formulations tested. The ocular anti-inflammatory study confirmed the significant prevention efficacy using the NCs, and these systems did not affect the corneal tissue structure. Moreover, the animal corneal structure treated with the NCs was analyzed using X-ray diffraction using synchrotron light. Small-angle X-ray scattering (SAXS) analysis did not show a significant difference in corneal collagen interfibrillar spacing after the treatment with freshly prepared NCs or NCs after the drying process compared to the corresponding negative control when inflammation was induced. Considering these results, the PPAR-Îł agonist NCs could be a safe and effective alternative for the treatment of inflammatory ocular processes
The effect of vitamin C deficiency and chronic ultraviolet-B exposure on corneal ultrastructure: a preliminary investigation
Purpose: In the visually debilitating condition of climatic droplet keratopathy, corneal transparency is progressively lost. Although the precise cause of the disease and the mechanism by which it progresses are not known, a lifetime exposure to high solar radiation and a vitamin C–deficient diet may be involved in its development. This study examines the effect of dietary ascorbate levels and ultraviolet (UV)-B exposure on corneal stromal structure.
Methods: Eight guinea pigs were divided into four treatment groups (A, B, C, and D). For 15 weeks, Groups A and C were fed an ascorbate-rich diet (2 mg/100 g bodyweight/day), while Groups B and D received an ascorbate-deficient diet (0.07 mg/100 g bodyweight/day). For the last 12 weeks of the study, Groups C and D also experienced chronic UVB exposure (0.12 J/cm2 for 40 min/day). Following euthanasia, the corneas were enucleated and their stromal ultrastructure examined using X-ray scattering and electron microscopy.
Results: UVB exposure resulted in an increased corneal thickness (p<0.001), but this was not accompanied by a widespread expansion of the collagen fibrillar array, and in the case of ascorbate-deficient animals, stromal thickening was associated with the compaction of collagen fibrils (p<0.01). Neither UVB exposure nor ascorbic acid deficiency caused any change in the average diameter or D-periodicity of the stromal collagen fibrils.
Conclusions: UVB-induced changes in the corneal ultrastructure were most pronounced in animals fed an ascorbic acid–deficient diet. This suggests that ascorbic acid may play a vital role in protecting the corneal stroma from the harmful effects of UVB
3D collagen orientation study of the human cornea using X-ray diffraction and femtosecond laser technology
Purpose. To study the distribution and predominant orientations of fibrillar collagen at different depths throughout the entire thickness of the human cornea. This information will form the basis of a full three-dimensional reconstruction of the preferred orientations of corneal lamellae.
Methods. Femtosecond laser technology was used to delaminate the central zones of five human corneas into three separate layers (anterior, mid, and posterior stroma), each with predetermined thicknesses. Wide-angle x-ray diffraction was used to study the gross collagen fibril orientation and distribution within each layer.
Results. The middle and posterior parts of the human cornea demonstrated a preferential orthogonal arrangement of collagen fibrils, directed along the superior–inferior and nasal–temporal meridians, with an increase in the number of lamellae toward the periphery. However, the anterior cornea (33% of total corneal thickness) showed no systematic preferred lamellar orientation.
Conclusions. In the posterior two thirds of the human cornea, collagen lies predominantly in the vertical and horizontal meridians (directed toward the four major rectus muscles), whereas collagen in the anterior third of the cornea is more isotropic. The predominantly orthogonal arrangement of collagen in the mid and posterior stroma may help to distribute strain in the cornea by allowing it to withstand the pull of the extraocular muscles, whereas the more isotropic arrangement in the anterior cornea may play an important role in the biomechanics of the cornea by resisting intraocular pressure while at the same time maintaining corneal curvature
- …