10 research outputs found

    Multimarker Screening of Oxidative Stress in Aging

    Get PDF
    Aging is a complex process of organism decline in physiological functions. There is no clear theory explaining this phenomenon, but the most accepted one is the oxidative stress theory of aging. Biomarkers of oxidative stress, substances, which are formed during oxidative damage of phospholipids, proteins, and nucleic acids, are present in body fluids of diseased people as well as the healthy ones (in a physiological concentration). 8-iso prostaglandin F 2 is the most prominent biomarker of phospholipid oxidative damage, o-tyrosine, 3-chlorotyrosine, and 3-nitrotyrosine are biomarkers of protein oxidative damage, and 8-hydroxy-2 -deoxyguanosine and 8-hydroxyguanosine are biomarkers of oxidative damage of nucleic acids. It is thought that the concentration of biomarkers increases as the age of people increases. However, the concentration of biomarkers in body fluids is very low and, therefore, it is necessary to use a sensitive analytical method. A combination of HPLC and MS was chosen to determine biomarker concentration in three groups of healthy people of a different age (twenty, forty, and sixty years) in order to find a difference among the groups

    Multimarker Screening of Oxidative Stress in Aging

    Get PDF
    Aging is a complex process of organism decline in physiological functions. There is no clear theory explaining this phenomenon, but the most accepted one is the oxidative stress theory of aging. Biomarkers of oxidative stress, substances, which are formed during oxidative damage of phospholipids, proteins, and nucleic acids, are present in body fluids of diseased people as well as the healthy ones (in a physiological concentration). 8-iso prostaglandin F2α is the most prominent biomarker of phospholipid oxidative damage, o-tyrosine, 3-chlorotyrosine, and 3-nitrotyrosine are biomarkers of protein oxidative damage, and 8-hydroxy-2′-deoxyguanosine and 8-hydroxyguanosine are biomarkers of oxidative damage of nucleic acids. It is thought that the concentration of biomarkers increases as the age of people increases. However, the concentration of biomarkers in body fluids is very low and, therefore, it is necessary to use a sensitive analytical method. A combination of HPLC and MS was chosen to determine biomarker concentration in three groups of healthy people of a different age (twenty, forty, and sixty years) in order to find a difference among the groups

    Oxidative stress markers are elevated in exhaled breath condensate of workers exposed to nanoparticles during iron oxide pigment production

    Get PDF
    PubMed ID: 26828137Markers of oxidative stress and inflammation were analysed in the exhaled breath condensate (EBC) and urine samples of 14 workers (mean age 43  ±  7 years) exposed to iron oxide aerosol for an average of 10  ±  4 years and 14 controls (mean age 39  ±  4 years) by liquid chromatography-electrospray ionization-mass spectrometry/mass spectrometry (LC-ESI-MS/MS) after solid-phase extraction. Aerosol exposure in the workplace was measured by particle size spectrometers, a scanning mobility particle sizer (SMPS) and an aerodynamic particle sizer (APS), and by aerosol concentration monitors, P-TRAK and DustTRAK DRX. Total aerosol concentrations in workplace locations varied greatly in both time and space. The median mass concentration was 0.083 mg m−3 (IQR 0.063–0.133 mg m−3) and the median particle concentration was 66 800 particles cm−3 (IQR 16 900–86 900 particles cm−3). In addition, more than 80% of particles were smaller than 100 nm in diameter. Markers of oxidative stress, malondialdehyde (MDA), 4-hydroxy-trans-hexenale (HHE), 4-hydroxy-trans-nonenale (HNE), 8-isoProstaglandin F2α (8-isoprostane) and aldehydes C6–C12, in addition to markers of nucleic acid oxidation, including 8-hydroxy-2-deoxyguanosine (8-OHdG), 8-hydroxyguanosine (8-OHG), 5-hydroxymethyl uracil (5-OHMeU), and of proteins, such as o-tyrosine (o-Tyr), 3-chlorotyrosine (3-ClTyr), and 3-nitrotyrosine (3-NOTyr) were analysed in EBC and urine by LC-ESI-MS/MS. Almost all markers of lipid, nucleic acid and protein oxidation were elevated in the EBC of workers comparing with control subjects. Elevated markers were MDA, HNE, HHE, C6–C10, 8-isoprostane, 8-OHdG, 8-OHG, 5-OHMeU, 3-ClTyr, 3-NOTyr, o-Tyr (all p  <  0.001), and C11 (p  <  0.05). Only aldehyde C12 and the pH of samples did not differ between groups. Markers in urine were not elevated. These findings suggest the adverse effects of nano iron oxide aerosol exposure and support the utility of oxidative stress biomarkers in EBC. The analysis of urine oxidative stress biomarkers does not support the presence of systemic oxidative stress in iron oxide pigment production workers.Web of Science101art. no. 01600

    Occupational asthma follow-up — which markers are elevated in exhaled breath condensate and plasma?

    Full text link
    Objectives: To search for optimal markers in the exhaled breath condensate (EBC), plasma and urine that would reflect the activity/ severity of occupational asthma (OA) after the withdrawal from the exposure to the allergen. Material and Methods: Markers of oxidative stress: 8-iso-prostaglandin F2α (8-isoprostane, 8-ISO), malondialdehyde (MDA), 4-hydroxy-trans-2-nonenale (HNE), cysteinyl leukotrienes (LT) and LTB4 were determined using liquid chromatography and mass spectrometry in 43 subjects with immunological OA (49.3±11.8 years), removed from the exposure to the sensitizing agent 10.5±6.5 years ago; and in 20 healthy subjects (49.0±14.9 years). EBC was harvested both before and after the methacholine challenge test. In parallel, identical markers were collected in plasma and urine. The results were analyzed together with forced expiratory volume in one second (FEV1), blood eosinophils, immunoglobulin E (IgE) and eosinophilic cationic protein (ECP) and statistically evaluated (Spearman rank correlation rS, two- or one-sample t tests and alternatively Kruskal Wallis or pair Wilcoxon tests). Results: Several parameters of lung functions were lower in the patients (FEV1% predicted, MEF25% and MEF50%, Rtot%, p < 0.001). Shorter time interval since the removal from the allergen exposure correlated with higher ECP (rS = 0.375) and lower FEV1%, MEF25% and MEF50% after methacholine challenge (rS = -0.404, -0.425 and -0.532, respectively). In the patients, IgE (p < 0.001) and ECP (p = 0.009) was increased compared to controls. In EBC, 8-ISO and cysteinyl LTs were elevated in the asthmatics initially and after the challenge. Initial 8-ISO in plasma correlated negatively with FEV1 (rS = -0.409) and with methacholine PD20 (rS = -0.474). 8-ISO in plasma after the challenge correlated with IgE (rS = 0.396). Conclusions: The improvement in OA is very slow and objective impairments persist years after removal from the exposure. Cysteinyl LTs and 8-ISO in EBC and 8-ISO in plasma might enrich the spectrum of useful objective tests for the follow-up of OA

    Occupational asthma follow-up — Which markers are elevated in exhaled breath condensate and plasma?

    No full text
    Objectives: To search for optimal markers in the exhaled breath condensate (EBC), plasma and urine that would reflect the activity/ severity of occupational asthma (OA) after the withdrawal from the exposure to the allergen. Material and Methods: Markers of oxidative stress: 8-iso-prostaglandin F2α (8-isoprostane, 8-ISO), malondialdehyde (MDA), 4-hydroxy-trans-2-nonenale (HNE), cysteinyl leukotrienes (LT) and LTB4 were determined using liquid chromatography and mass spectrometry in 43 subjects with immunological OA (49.3±11.8 years), removed from the exposure to the sensitizing agent 10.5±6.5 years ago; and in 20 healthy subjects (49.0±14.9 years). EBC was harvested both before and after the methacholine challenge test. In parallel, identical markers were collected in plasma and urine. The results were analyzed together with forced expiratory volume in one second (FEV1), blood eosinophils, immunoglobulin E (IgE) and eosinophilic cationic protein (ECP) and statistically evaluated (Spearman rank correlation rS, two- or one-sample t tests and alternatively Kruskal Wallis or pair Wilcoxon tests). Results: Several parameters of lung functions were lower in the patients (FEV1% predicted, MEF25% and MEF50%, Rtot%, p < 0.001). Shorter time interval since the removal from the allergen exposure correlated with higher ECP (rS = 0.375) and lower FEV1%, MEF25% and MEF50% after methacholine challenge (rS = -0.404, -0.425 and -0.532, respectively). In the patients, IgE (p < 0.001) and ECP (p = 0.009) was increased compared to controls. In EBC, 8-ISO and cysteinyl LTs were elevated in the asthmatics initially and after the challenge. Initial 8-ISO in plasma correlated negatively with FEV1 (rS = -0.409) and with methacholine PD20 (rS = -0.474). 8-ISO in plasma after the challenge correlated with IgE (rS = 0.396). Conclusions: The improvement in OA is very slow and objective impairments persist years after removal from the exposure. Cysteinyl LTs and 8-ISO in EBC and 8-ISO in plasma might enrich the spectrum of useful objective tests for the follow-up of OA

    Repeated intra-specific divergence in lifespan and ageing of African annual fishes along an aridity gradient

    No full text
    Life span and aging are substantially modified by natural selection. Across species, higher extrinsic (environmentally related) mortality (and hence shorter life expectancy) selects for the evolution of more rapid aging. However, among populations within species, high extrinsic mortality can lead to extended life span and slower aging as a consequence of condition-dependent survival. Using within-species contrasts of eight natural populations of Nothobranchius fishes in common garden experiments, we demonstrate that populations originating from dry regions (with short life expectancy) had shorter intrinsic life spans and a greater increase in mortality with age, more pronounced cellular and physiological deterioration (oxidative damage, tumor load), and a faster decline in fertility than populations from wetter regions. This parallel intraspecific divergence in life span and aging was not associated with divergence in early life history (rapid growth, maturation) or pace-of-life syndrome (high metabolic rates, active behavior). Variability across four study species suggests that a combination of different aging and life-history traits conformed with or contradicted the predictions for each species. These findings demonstrate that variation in life span and functional decline among natural populations are linked, genetically underpinned, and can evolve relatively rapidly
    corecore