2,477 research outputs found

    Time-resolved charge fractionalization in inhomogeneous Luttinger liquids

    Full text link
    The recent observation of charge fractionalization in single Tomanga-Luttinger liquids (TLLs) [Kamata et al., Nature Nanotech., 9 177 (2014)] opens new routes for a systematic investigation of this exotic quantum phenomenon. In this Letter we perform measurements on two adjacent TLLs and put forward an accurate theoretical framework to address the experiments. The theory is based on the plasmon scattering approach and can deal with injected charge pulses of arbitrary shape in TLL regions. We accurately reproduce and interpret the time-resolved multiple fractionalization events in both single and double TLLs. The effect of inter-correlations between the two TLLs is also discussed.Comment: 5 pages + Supplementary Material. To appear in Phys. Rev. B: Rapid. Com

    Voltage-controlled Group Velocity of Edge Magnetoplasmon in the Quantum Hall Regime

    Full text link
    We investigate the group velocity of edge magnetoplasmons (EMPs) in the quantum Hall regime by means of time-of-flight measurement. The EMPs are injected from an Ohmic contact by applying a voltage pulse, and detected at a quantum point contact by applying another voltage pulse to its gate. We find that the group velocity of the EMPs traveling along the edge channel defined by a metallic gate electrode strongly depends on the voltage applied to the gate. The observed variation of the velocity can be understood to reflect the degree of screening caused by the metallic gate, which damps the in-plane electric field and hence reduces the velocity. The degree of screening can be controlled by changing the distance between the gate and the edge channel with the gate voltage.Comment: 5 pages, 6 figures, to be published in Physical Review

    Plasmon transport in graphene investigated by time-resolved measurement

    Get PDF
    Plasmons, which are collective charge oscillations, offer the potential to use optical signals in nano-scale electric circuits. Recently, plasmonics using graphene have attracted interest, particularly because of the tunable plasmon frequency through the carrier density nn. However, the nn dependence of the plasmon velocity is weak (n1/4\propto n^{1/4}) and it is difficult to tune the frequency over orders of magnitude. Here, we demonstrate that the velocity of plasmons in graphene can be changed over two orders of magnitude by applying a magnetic field BB and by the presence/absence of a gate; at high BB, edge magnetoplasmons (EMPs), which are plasmons localized at the sample edge, are formed and their velocity depends on BB and the gate screening effect. The wide range tunability of the velocity and the observed low-loss plasmon transport encourage designing graphene nanostructures for plasmonics applications.Comment: submitte

    Measurement of energy muons in EAS at energy region larger thean 10(17) eV

    Get PDF
    A measurement of low energy muons in extensive air showers (EAS) (threshold energies are 0.25, 0.5, 0.75 and 1.38 GeV) was carried out. The density under the concrete shielding equivalent to 0.25 GeV at core distance less than 500 m and 0.5 GeV less than 150 m suffers contamination of electromagnetic components. Therefore the thickness of concrete shielding for muon detectors for the giant air shower array is determined to be 0.5 GeV equivalence. Effects of photoproduced muons are found to be negligible in the examined ranges of shower sizes and core distances. The fluctuation of the muon density in 90 sq m is at most 25% between 200 m and 600 m from the core around 10 to the 17th power eV

    Magnetic monopole search by 130 m(2)sr He gas proportional counter

    Get PDF
    A search experiment for cosmic ray magnetic monopoles was performed by means of atomic induction mechanism by using He mixture gas proportional counters of the calorimeter (130 square meters sr) at the center of the Akeno air shower array. In 3,482 hours operation no monopole candidate was observed. The upper limit of the monopole flux is 1.44 x 10 to the minus 13th power cm-z, sec -1, sr-1 (90% C.L.) for the velocity faster than 7 x 0.0001 c

    Gamma rays of energy or = 10(15) eV from Cyg X-3

    Get PDF
    The experimental data of extensive air showers observed at Akeno have been analyzed to detect the gamma ray signal from Cyg X-3. After muon poor air showers are selected, the correlation of data acquisition time with 4.8 hours X-ray period is studied, giving the data concentration near the phase 0.6, the time of X-ray maximum. The probability that uniform backgrounds create the distribution is 0.2%. The time averaged integral gamma ray flux is estimated as (1.1 + or - 0.4)x 10 to the -14th power cm(-2) sec(-1) for Eo 10 to the 15th power eV and (8.8 + or - 5.0)x 10 to the 14th power cm(-2) sec(-1) for Eo 6 x 10 to the 14th power eV

    EAS development curve at energy of 10(16) - 10(18) eV measured by optical Cerenkov light

    Get PDF
    The data of optical Cerenkov light from extensive air shower observed at the core distance more than 1 Km at Akeno are reexamined. Applying the new simulated results, the shower development curves for the individual events were constructed. For the showers of 10 to 17th power eV the average depth at the shower maximum is determined to be 660 + or - 40 gcm/2. The shower curve of average development is found to be well described by a Gaisser-Hillas shower development function with above shower maximum depth

    Entropy for Asymptotically AdS_3 Black Holes

    Full text link
    We propose that Strominger's method to derive the BTZ black hole entropy is in fact applicable to other asymptotically AdS_3 black holes and gives the correct functional form of entropies. We discuss various solutions in the Einstein-Maxwell theory, dilaton gravity, Einstein-scalar theories, and Einstein-Maxwell-dilaton theory. In some cases, solutions approach AdS_3 asymptotically, but their entropies do not have the form of Cardy's formula. However, it turns out that they are actually not "asymptotically AdS3AdS_3" solutions. On the other hand, for truly asymptotically AdS_3 solutions, their entropies have the form of Cardy's formula. In this sense, all known solutions are consistent with our proposal.Comment: 21 pages, LaTeX; v2: added discussion for section 3.

    Akeno 20 km (2) air shower array (Akeno Branch)

    Get PDF
    As the first stage of the future huge array, the Akeno air shower array was expanded to about 20 sq. km. by adding 19 scintillation detectors of 2.25 sq m area outside the present 1 sq. km. Akeno array with a new data collection system. These detectors are spaced about 1km from each other and connected by two optical fiber cables. This array has been in partial operation from 8th, Sep. 1984 and full operation from 20th, Dec. 1984. 20 sq m muon stations are planned to be set with 2km separation and one of them is now under construction. The origin of the highest energy cosmic rays is studied

    Radio Emission from Cosmic Ray Air Showers: Coherent Geosynchrotron Radiation

    Get PDF
    Cosmic ray air showers have been known for over 30 years to emit pulsed radio emission in the frequency range from a few to a few hundred MHz, an effect that offers great opportunities for the study of extensive air showers with upcoming fully digital "software radio telescopes" such as LOFAR and the enhancement of particle detector arrays such as KASCADE Grande or the Pierre Auger Observatory. However, there are still a lot of open questions regarding the strength of the emission as well as the underlying emission mechanism. Accompanying the development of a LOFAR prototype station dedicated to the observation of radio emission from extensive air showers, LOPES, we therefore take a new approach to modeling the emission process, interpreting it as "coherent geosynchrotron emission" from electron-positron pairs gyrating in the earth's magnetic field. We develop our model in a step-by-step procedure incorporating increasingly realistic shower geometries in order to disentangle the coherence effects arising from the different scales present in the air shower structure and assess their influence on the spectrum and radial dependence of the emitted radiation. We infer that the air shower "pancake" thickness directly limits the frequency range of the emitted radiation, while the radial dependence of the emission is mainly governed by the intrinsic beaming cone of the synchrotron radiation and the superposition of the emission over the air shower evolution as a whole. Our model succeeds in reproducing the qualitative trends in the emission spectrum and radial dependence that were observed in the past, and is consistent with the absolute level of the emission within the relatively large systematic errors in the experimental data.Comment: 17 pages, 18 figures, accepted for publication by Astronomy & Astrophysic
    corecore