212 research outputs found

    A study of frequency and pulses for stepper motor controller system by using programmable logic controller

    Get PDF
    The stepper motor movement process produced different frequency and pulses. This research explained about the frequency and pulses for the stepper motor movement by using Programmable Logic Controller (PLC) as research method. The study was done to find the suitable frequency and pulses for stepper motor movement by developing a prototype stepper motor controller system. The pulse frequency used did not affected the distance of moving load in the stepper motor operations. The increasing number of pulse frequency only will affect the time taken for the stepper motor to complete its operations. The result showed that number of pulse frequency at high operation was 5000 Hz. Pulse number reacted as a manipulated variable that affected both factor which is time taken of stepper motor operation and the distance of moving load

    Elucidating the Surface Functionality of Biomimetic RGD Peptides Immobilized on Nano-P(3HB-co-4HB) for H9c2 Myoblast Cell Proliferation

    Get PDF
    Biomaterial scaffolds play crucial role to promote cell proliferation and foster the regeneration of new tissues. The progress in material science has paved the way for the generation of ingenious biomaterials. However, these biomaterials require further optimization to be effectively used in existing clinical treatments. It is crucial to develop biomaterials which mimics structure that can be actively involved in delivering signals to cells for the formation of the regenerated tissue. In this research we nanoengineered a functional scaffold to support the proliferation of myoblast cells. Poly(3-hydroxybutyrate-co-4-hydroxybutyrate) [P(3HB-co-4HB)] copolymer is chosen as scaffold material owing to its desirable mechanical and physical properties combined with good biocompatibility, thus eliciting appropriate host tissue responses. In this study P(3HB-co-4HB) copolymer was biosynthesized using Cupriavidus malaysiensis USMAA1020 transformant harboring additional PHA synthase gene, and the viability of a novel P(3HB-co-4HB) electrospun nanofiber scaffold, surface functionalized with RGD peptides, was explored. In order to immobilize RGD peptides molecules onto the P(3HB-co-4HB) nanofibers surface, an aminolysis reaction was performed. The nanoengineered scaffolds were characterized using SEM, organic elemental analysis (CHN analysis), FTIR, surface wettability and their in vitro degradation behavior was evaluated. The cell culture study using H9c2 myoblast cells was conducted to assess the in vitro cellular response of the engineered scaffold. Our results demonstrated that nano-P(3HB-co-4HB)-RGD scaffold possessed an average fiber diameter distribution between 200 and 300 nm, closely biomimicking, from a morphological point of view, the structural ECM components, thus acting as potential ECM analogs. This study indicates that the surface conjugation of biomimetic RGD peptide to the nano-P(3HB-co-4HB) fibers increased the surface wettability (15 ± 2°) and enhanced H9c2 myoblast cells attachment and proliferation. In summary, the study reveals that nano-P(3HB-co-4HB)-RGD scaffold can be considered a promising candidate to be further explored as cardiac construct for building cardiac construct

    Air quality modelling using chemometric techniques

    Get PDF
    The datasets of air quality parameters for three years (2012-2014) were applied. HACA gave the result of three different groups of similarity based on the characteristics of air quality parameters. DA shows all seven parameters (CO, O3, PM10, SO2, NOx, NO and NO2) gave the most significant variables after stepwise backward mode. PCA identifies the major source of air pollution is due to combustion of fossil fuels in motor vehicles and industrial activities. The ANN model shows a better prediction compared to the MLR model with R2 values equal to 0.819 and 0.773 respectively. This study presents that the chemometric techniques and modelling become an excellent tool in API assessment, air pollution source identification, apportionment and can be setbacks in designing an API monitoring network for effective air pollution resources management

    Selection of classification models from repository of model for water quality dataset

    Get PDF
    This paper proposes a new technique, Model Selection Technique (MST) for selection andranking of models from the repository of models by combining three performance measures(Acc, TPR and TNR). This technique provides weightage to each performance measure to findthe most suitable model from the repository of models. A number of classification modelshave been generated to classify water quality using the most significant features andclassifiers such as J48, JRip and BayesNet. To validate this technique proposed, the waterquality dataset of Kinta River was used in this research. The results demonstrate that theFunction classifier is the optimal model with the most outstanding accuracy of 97.02%, TPR =0.96 and TNR = 0.98. In conclusion, MST is able to find the most relevant model from therepository of models by using weights in classifying the water quality dataset.Keywords: selection of models; water quality; classification model; models repository

    Enhancement of Landfill Daily Cover in Minimizing the Migration of Heavy Metals in Landfill Leachate by Using Natural Soil, Pressmud Empty Fruit Bunch (EFB) in PulauBurung Landfill

    Full text link
    This study emphasizes on the removal of heavy metals in landfill leachate by using natural soil mixed with agricultural wastes. The agricultural wastes used in this study werenatural soil or known as laterite soil, pressmud which is a waste from sugar refinery process and Empty Fruit Bunch (EFB), one of many forms of waste fromoil palm industry. The laterite soil was mixed with these wastes at different percentages of weight ratio namely 50S:40P:10E, 50S:30P:20E, 50S:25P:25E, 50S:10P:40E and 50S:20P:30E. The terms S, P and E each refers to soil, pressmud and empty fruit bunch respectively.Removal efficiency tests were also carried out and the results showed that the mixtures of laterite soil have the ability to remove concentrationsof As2+, Cd2+, Cr2+, Cu2+, Fe2+, Ni2+ and Zn2+between a range of 86% (minimum) and 99% (maximum) compared to removal via soil per se. Ergo, the laterite soil-pressmud-EFB mixtures signify great potential to be made as a daily cover material that minimizes heavy metals migration in landfill leachate, eliminates odor issues and providesadditional protection from further infiltration

    Interference issues and mitigation method in WSN 2.4GHz ISM band: A survey

    Get PDF
    Current lifestyles promote the development and advancement in wireless technologies, especially in Wireless Sensor Networks (WSN) due to its several benefits.WSN offers a low cost, low data rate, flexible routing, longer lifetime, and low-energy consumption suitable for unmanned and long term monitoring.Among huge WSN applications, some key applications are smart houses, environmental monitoring, military applications, and other monitoring applications.As a result, ubiquitous increase in the number of wireless devices occupying the 2.4GHz frequency band.This causes a dense wireless connection followed by interference problem to WSN in the 2.4GHz frequency band. WSN is most affected by the interference issue because it has a lower data rate and transmission power compared to WLAN.Despite efforts made by researchers, to the author's knowledge, the interference issue is still a major problem in wireless networks.This paper aims to review the coexistence and interference issues of existing wireless technologies in the 2.4GHz Industrial, Scientific and Medical (ISM) band.Keywords— Coexistence, Frequency Spectrum, IEEE 802.15.4, Interference, WSN, 2.4GHz ISM ban

    An Overview of Power Electronics Applications in Fuel Cell Systems: DC and AC Converters

    Get PDF
    Power electronics and fuel cell technologies play an important role in the field of renewable energy. The demand for fuel cells will increase as fuel cells become the main power source for portable applications. In this application, a high-efficiency converter is an essential requirement and a key parameter of the overall system. This is because the size, cost, efficiency, and reliability of the overall system for portable applications primarily depend on the converter. Therefore, the selection of an appropriate converter topology is an important and fundamental aspect of designing a fuel cell system for portable applications as the converter alone plays a major role in determining the overall performance of the system. This paper presents a review of power electronics applications in fuel cell systems, which include various topology combinations of DC converters and AC inverters and which are primarily used in fuel cell systems for portable or stand-alone applications. This paper also reviews the switching techniques used in power conditioning for fuel cell systems. Finally, this paper addresses the current problem encountered with DC converters and AC inverter

    An Overview of Power Electronics Applications in Fuel Cell Systems: DC and AC Converters

    Get PDF
    Power electronics and fuel cell technologies play an important role in the field of renewable energy. The demand for fuel cells will increase as fuel cells become the main power source for portable applications. In this application, a high-efficiency converter is an essential requirement and a key parameter of the overall system. This is because the size, cost, efficiency, and reliability of the overall system for portable applications primarily depend on the converter. Therefore, the selection of an appropriate converter topology is an important and fundamental aspect of designing a fuel cell system for portable applications as the converter alone plays a major role in determining the overall performance of the system. This paper presents a review of power electronics applications in fuel cell systems, which include various topology combinations of DC converters and AC inverters and which are primarily used in fuel cell systems for portable or stand-alone applications. This paper also reviews the switching techniques used in power conditioning for fuel cell systems. Finally, this paper addresses the current problem encountered with DC converters and AC inverter
    corecore