26 research outputs found
Implementation and application of Retinex algorithms to the preprocessing of retinography color images
La retinopatía diabética es una enfermedad causada por complicaciones de la retina, con evolución progresiva.
Esta patología se detecta en las imágenes de fondo de ojo que, en la mayoría de los casos, presentan iluminación no uniforme.
En este trabajo se implementaron y aplicaron cuatro algoritmos de la teoría Retinex a imágenes de fondo de ojo, con el fin de
proporcionar una mejor iluminación, para una posterior visualización o procesamiento, buscando detectar con mayor exactitud la
presencia o no de la enfermedad y poder hacer un seguimiento más acertado.Diabetic retinopathy is a disease caused by complications of the retina, with progressive evolution. This pathology
is detected on the fundus eye images, which in most cases have non-uniform illumination. In this paper four type of algorithms,
based on the Retinex theory, were implemented and applied to fundus images in order to provide better illumination for later
visualization or processing. The purpose was to find more accuracy to detect the presence or not of the disease and thus to get a
more accurate approach of diagnosis
Detección temprana de patologías diabéticas oculares en retinografías utilizando un sistema multiagentes
La Retinopatía Diabética es la complicación que suele terminar con la ceguera si los pacientes que no son tratados precozmente. Por este motivo los sistemas computacionales que ayuden a la toma de decisiones tempranas, surgen como una potencial herramienta. En este trabajo se presenta el diseño y desarrollo de un sistema multiagentes, desarrolado en JADE y diseñado mediante GAIA, para el análisis de imágenes de retina de fondo ocular. Se presenta una descripción del trabajo de cada uno de los agentes que analizan y brindan información acerca la presencia o no de signos patológicos de Edema Macular Diabético.Sociedad Argentina de Informática e Investigación Operativ
Detección temprana de patologías diabéticas oculares en retinografías utilizando un sistema multiagentes
La Retinopatía Diabética es la complicación que suele terminar con la ceguera si los pacientes que no son tratados precozmente. Por este motivo los sistemas computacionales que ayuden a la toma de decisiones tempranas, surgen como una potencial herramienta. En este trabajo se presenta el diseño y desarrollo de un sistema multiagentes, desarrolado en JADE y diseñado mediante GAIA, para el análisis de imágenes de retina de fondo ocular. Se presenta una descripción del trabajo de cada uno de los agentes que analizan y brindan información acerca la presencia o no de signos patológicos de Edema Macular Diabético.Sociedad Argentina de Informática e Investigación Operativ
Detección temprana de patologías diabéticas oculares en retinografías utilizando un sistema multiagentes
La Retinopatía Diabética es la complicación que suele terminar con la ceguera si los pacientes que no son tratados precozmente. Por este motivo los sistemas computacionales que ayuden a la toma de decisiones tempranas, surgen como una potencial herramienta. En este trabajo se presenta el diseño y desarrollo de un sistema multiagentes, desarrolado en JADE y diseñado mediante GAIA, para el análisis de imágenes de retina de fondo ocular. Se presenta una descripción del trabajo de cada uno de los agentes que analizan y brindan información acerca la presencia o no de signos patológicos de Edema Macular Diabético.Sociedad Argentina de Informática e Investigación Operativ
Optimal Transport-based Graph Matching for 3D retinal OCT image registration
Registration of longitudinal optical coherence tomography (OCT) images
assists disease monitoring and is essential in image fusion applications. Mouse
retinal OCT images are often collected for longitudinal study of eye disease
models such as uveitis, but their quality is often poor compared with human
imaging. This paper presents a novel but efficient framework involving an
optimal transport based graph matching (OT-GM) method for 3D mouse OCT image
registration. We first perform registration of fundus-like images obtained by
projecting all b-scans of a volume on a plane orthogonal to them, hereafter
referred to as the x-y plane. We introduce Adaptive Weighted Vessel Graph
Descriptors (AWVGD) and 3D Cube Descriptors (CD) to identify the correspondence
between nodes of graphs extracted from segmented vessels within the OCT
projection images. The AWVGD comprises scaling, translation and rotation, which
are computationally efficient, whereas CD exploits 3D spatial and frequency
domain information. The OT-GM method subsequently performs the correct
alignment in the x-y plane. Finally, registration along the direction
orthogonal to the x-y plane (the z-direction) is guided by the segmentation of
two important anatomical features peculiar to mouse b-scans, the Internal
Limiting Membrane (ILM) and the hyaloid remnant (HR). Both subjective and
objective evaluation results demonstrate that our framework outperforms other
well-established methods on mouse OCT images within a reasonable execution
time
Penyelesaian Masalah Penjadwalan Job-Majemuk dengan Pemakaian Sumberdaya- Majemuk Menggunakan Algoritma Genetika
Scheduling problems with regard to the problem of determining the order to carry out a number of tasks. This issue covers a wide range of areas such as manufacturing, installation project, production planning, hospital management and reservation system. This problem can be seen as an optimization problem of dealing with a number of constraints. An increase in the complexity of the problem requires the existence of an efficient and effective techniques. This study addresses the issue of scheduling multiple job-where there are several different types of resources that are working on an operation or activity simultaneously. Genetic algorithms are developed to solve these problems. Genetic algorithm testing performed against a number of hipotetik example. The output agoritma of genetics compared against optimal technique of the output and the output algorithm based on Lagrange relaxation on the same issue. The results of the comparison with optimal techniques and algorithms based on Lagrange relaxation indicates a significant improvement of computing efficiency, but nevertheless occur a little decrease in effectiveness
The Educational Sandbox: augmented reality a new resource for teaching
En este artículo presentamos el proyecto Arenero Educativo que utiliza la
tecnología de Realidad Aumentada para implementar un recurso para la
enseñanza de las
matemáticas y las
ciencias naturales.
Esta instalación
usa una cámara infrarroja para leer la superficie tridimensional de la arena y
después dibujar sobre ella curvas de nivel y cuerpos de agua que se
transforman cuando el usuario interactúa con la arena.
Describimos
con detalle
las nuevas posibilidades de su interfaz novedosa
y su implementación técnica. Detallamos
también nuestra propuesta didáctica
y
reflexionamos acerca de la importancia de establecer una ruta de
implementación accesible. Finalmente,
discutimos acerca de la importancia
del MediaLab
de la Universidad de Salamanca como
agente dinamizador de este tipo
de proyectos multidisciplinares.In this paper,
we present the project Educational Sandbox that uses the
Augmented Reality to implement a resource for the teaching of mathematics
and natural sciences. This installation uses an infrared camera to read the
three-dimensional surface of the sand and then dr
aw on it contours and bodies
of water that are transformed when the user interacts with the sand.
We describe in detail, the new possibilities of
this
novel interface and its
technical implementation. We also describe our didactic proposal for this
install
ation and reflect on the importance of establishing an accessible
implementation route. Finally, we discuss about the importance of the
MediaLab
of the University of Salamanca as a dynamizing agent of this type of
multidisciplinary projects
Single-Model and Any-Modality for Video Object Tracking
In the realm of video object tracking, auxiliary modalities such as depth,
thermal, or event data have emerged as valuable assets to complement the RGB
trackers. In practice, most existing RGB trackers learn a single set of
parameters to use them across datasets and applications. However, a similar
single-model unification for multi-modality tracking presents several
challenges. These challenges stem from the inherent heterogeneity of inputs --
each with modality-specific representations, the scarcity of multi-modal
datasets, and the absence of all the modalities at all times. In this work, we
introduce Un-Track, a Unified Tracker of a single set of parameters for any
modality. To handle any modality, our method learns their common latent space
through low-rank factorization and reconstruction techniques. More importantly,
we use only the RGB-X pairs to learn the common latent space. This unique
shared representation seamlessly binds all modalities together, enabling
effective unification and accommodating any missing modality, all within a
single transformer-based architecture. Our Un-Track achieves +8.1 absolute
F-score gain, on the DepthTrack dataset, by introducing only +2.14 (over 21.50)
GFLOPs with +6.6M (over 93M) parameters, through a simple yet efficient
prompting strategy. Extensive comparisons on five benchmark datasets with
different modalities show that Un-Track surpasses both SOTA unified trackers
and modality-specific counterparts, validating our effectiveness and
practicality. The source code is publicly available at
https://github.com/Zongwei97/UnTrack.Comment: Accepted by CVPR202