39 research outputs found

    A 700-year paleoecological record of boreal ecosystem responses to climatic variation from Alaska

    Get PDF
    Copyright by the Ecological Society of America © 2008. Willy Tinner, Christian Bigler, Sharon Gedye, Irene Gregory-Eaves, Richard T. Jones, Petra Kaltenrieder, Urs KrĂ€henbĂŒhl, and Feng Sheng Hu 2008. A 700-YEAR PALEOECOLOGICAL RECORD OF BOREAL ECOSYSTEM RESPONSES TO CLIMATIC VARIATION FROM ALASKA. Ecology 89:729–743. http://dx.doi.org/10.1890/06-1420.1Recent observations and model simulations have highlighted the sensitivity of the forest–tundra ecotone to climatic forcing. In contrast, paleoecological studies have not provided evidence of tree-line fluctuations in response to Holocene climatic changes in Alaska, suggesting that the forest–tundra boundary in certain areas may be relatively stable at multicentennial to millennial time scales. We conducted a multiproxy study of sediment cores from an Alaskan lake near the altitudinal limits of key boreal-forest species. Paleoecological data were compared with independent climatic reconstructions to assess ecosystem responses of the forest–tundra boundary to Little Ice Age (LIA) climatic fluctuations. Pollen, diatom, charcoal, macrofossil, and magnetic analyses provide the first continuous record of vegetation–fire–climate interactions at decadal to centennial time scales during the past 700 years from southern Alaska. Boreal-forest diebacks characterized by declines of Picea mariana, P. glauca, and tree Betula occurred during the LIA (AD 1500–1800), whereas shrubs (Alnus viridis, Betula glandulosa/nana) and herbaceous taxa (Epilobium, Aconitum) expanded. Marked increases in charcoal abundance and changes in magnetic properties suggest increases in fire importance and soil erosion during the same period. In addition, the conspicuous reduction or disappearance of certain aquatic (e.g., Isoetes, Nuphar, Pediastrum) and wetland (Sphagnum) plants and major shifts in diatom assemblages suggest pronounced lake-level fluctuations and rapid ecosystem reorganization in response to LIA climatic deterioration. Our results imply that temperature shifts of 1–2°C, when accompanied by major changes in moisture balance, can greatly alter high-altitudinal terrestrial, wetland, and aquatic ecosystems, including conversion between boreal-forest tree line and tundra. The climatic and ecosystem variations in our study area appear to be coherent with changes in solar irradiance, suggesting that changes in solar activity contributed to the environmental instability of the past 700 years

    Ice cave reveals environmental forcing of long-term Pyrenean tree line dynamics

    Get PDF
    1. Tree lines are supposed to react sensitively to the current global change. However, the lack of a long-term (millennial) perspective on tree line shifts in the Pyrenees prevents understanding the underlying ecosystem dynamics and processes. 2. We combine multiproxy palaeoecological analyses (fossil pollen, spores, conifer stomata, plant macrofossils, and ordination) from an outstanding ice cave deposit located in the alpine belt c. 200 m above current tree line (Armeña-A294 Ice Cave, 2, 238 m a.s.l.), to assess for the first time in the Pyrenees, tree line dynamics, and ecosystem resilience to climate changes 5, 700–2, 200 (cal.) years ago. 3. The tree line ecotone was located at the cave altitude from 5, 700 to 4, 650 cal year bp, when vegetation consisted of open Pinus uncinata Ramond ex DC and Betula spp. Woodlands and timberline were very close to the site. Subsequently, tree line slightly raised and timberline reached the ice cave altitude, exceeding its today''s uppermost limit by c. 300–400 m during more than four centuries (4, 650 and 4, 200 cal year bp) at the end of the Holocene Thermal Maximum. After 4, 200 cal year bp, alpine tundra communities dominated by Dryas octopetala L. expanded while tree line descended, most likely as a consequence of the Neoglacial cooling. Prehistoric livestock raising likely reinforced climate cooling impacts at 3, 450–3, 250 cal year bp. Finally, a tree line ecotone developed around the cave that was on its turn replaced by alpine communities during the past 2, 000 years. 4. Synthesis. The long-term Pyrenean tree line ecotone sensitivity suggests that rising temperatures will trigger future P. uncinata and Betula expansions to higher elevations, replacing arctic–alpine plant species. Climate change is causing the rapid melting of the cave ice; rescue investigations would be urgently needed to exploit its unique ecological information

    Are food-deceptive orchid species really functionally specialized for pollinators?

    Get PDF
    Food-deceptive orchid species have traditionally been considered pollination specialized to bees or butterflies. However, it is unclear to which concept of specialization this assumption is related; if to that of phenotypic specialization or of functional specialization. The main aim of this work was to verify if pollinators of five widespread food-deceptive orchid species (Anacamptis morio (L.) R.M. Bateman, Pridgeon & M.W. Chase, Anacamptis pyramidalis (L.) Rich., Himantoglossum adriaticum H. Baumann, Orchis purpurea Huds. and Orchis simia Lam.) predicted from the phenotypic point of view matched with the observed ones. We addressed the question by defining target orchids phenotypic specialization on the basis of their floral traits, and we compared the expected guilds of pollinators with the observed ones. Target orchid pollinators were collected by conducting a meta-analysis of the available literature and adding unpublished field observations, carried out in temperate dry grasslands in NE Italy. Pollinator species were subsequently grouped into guilds and differences in the guild spectra among orchid species grouped according to their phenotype were tested. In contradiction to expectations derived from the phenotypic point of view, food-deceptive orchid species were found to be highly functionally generalized for pollinators, and no differences in the pollinator guild spectra could be revealed among orchid groups. Our results may lead to reconsider food-deceptive orchid pollination ecology by revaluating the traditional equation orchid-pollination specialization

    INTEGRATION: youth welfare and sustainable development in Switzerland

    No full text
    In Switzerland with its 7.3 million inhabitants, about 200,000 people are working in the agricultural sector managing 66,000 farms. Between 1990 and 2000, the number of agricultural employees shrunk by 50,000 and more than 22,000 agrarian businesses were abandoned – mostly smallscale farms with less than 3 ha. The Emmental region is a part of Switzerland characterized by a high share of agriculture. Compared to other regions the proportion of rural inhabitants is still relatively high, the decline of farms is therefore below the figures of the rest of Switzerland. Nevertheless, as an effect of the structural change also in rural regions, the remaining farmers depend more and more on additional incomes and are looking for extra work in different branches. Although the Emmental region is one of the economically poor marginal regions of Switzerland, it has a multitude of strengths: besides the intact landscape and numerous natural resources the inhabitants have a strong liaison to their culture and traditions. The family structures are essentially still in good order and the social network is functioning. Based on these strengths, the project INTEGRATION aims at three main targets: * Providing space for living and developing on a qualified farm with system-therapeutic and socialpedagogic support for socially deprived children and adolescents from urban centres such as Berne, Basel and Lucerne. * Offering places of care creates innovative and sustainable supplementary earnings for the farming families in an economically unfavourable mountain area. * At the political level, a new quality of the relation between ‘city’ and ‘country’ evolves by bringing together different cultures and exchanging ideas and experiences. INTEGRATION is a social youth-welfare project with a strong liaison with the economic sector. The well-being of the involved children, adolescents and partner families comes first but with its connections to economic and ecological aspects INTEGRATION has also become a typical project in the field of sustainable rural development. This may have led to the invitation of the representatives of the project to participate in the preparatory workshop in Vorden (The Netherlands), April 2004. They had the opportunity to present and discuss the philosophy of the project INTEGRATION and its results during the last eight years. As an innovative project in the field of social youth welfare in Switzerland, INTEGRATION was also asked for a contribution to the publication ‘Farming for Health’. Although there are quite a lot of activities in this field, the term ‘Farming for Health’ is neither widely known nor used in Switzerland yet. After the preparatory workshop, the project team discussed an appropriate translation into (Swiss) German: the best working title was found in ‘Landwirtschaft und soziale Wohlfahrt’. It will be a challenge for the future to determine a term that meets most of the requirements of the then involved organizations. The first part of this contribution gives a short overall description of activities in Switzerland, while the project INTEGRATION with its targets, activities and results is described in the second par

    Large Family With Maturity-Onset Diabetes of the Young and a Novel V121I Mutation in HNF4A

    No full text
    Maturity-onset diabetes of the young (MODY) is a subtype of early-onset diabetes mellitus which is characterized by autosomal dominant inheritance. Several genes are known to induce MODY : HNF4A/MODY1, GCK/MODY2, TCF1/MODY3, IPF1/MODY4, TCF2/MODY5 and NEUROD1/MODY6. We studied a Swiss family with 13 diabetic patients over 3 generations. The average age at diagnosis was 35 +/- 15 years (7 subjects before 30). In addition, 2 individuals had an abnormal oral glucose tolerance. The mutation present in this family was located in the DNA binding domain of HNF4A, a strongly conserved region across almost all species, and segregated in all the MODY patients. Identification of this missense mutation allowed for presymptomatic diagnosis in the younger generations and will improve medical follow-up of the predisposed individual
    corecore