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Abstract. Recent observations and model simulations have highlighted the sensitivity of
the forest–tundra ecotone to climatic forcing. In contrast, paleoecological studies have not
provided evidence of tree-line fluctuations in response to Holocene climatic changes in Alaska,
suggesting that the forest–tundra boundary in certain areas may be relatively stable at
multicentennial to millennial time scales. We conducted a multiproxy study of sediment cores
from an Alaskan lake near the altitudinal limits of key boreal-forest species. Paleoecological
data were compared with independent climatic reconstructions to assess ecosystem responses
of the forest–tundra boundary to Little Ice Age (LIA) climatic fluctuations. Pollen, diatom,
charcoal, macrofossil, and magnetic analyses provide the first continuous record of
vegetation–fire–climate interactions at decadal to centennial time scales during the past 700
years from southern Alaska. Boreal-forest diebacks characterized by declines of Picea
mariana, P. glauca, and tree Betula occurred during the LIA (AD 1500–1800), whereas shrubs
(Alnus viridis, Betula glandulosa/nana) and herbaceous taxa (Epilobium, Aconitum) expanded.
Marked increases in charcoal abundance and changes in magnetic properties suggest increases
in fire importance and soil erosion during the same period. In addition, the conspicuous
reduction or disappearance of certain aquatic (e.g., Isoetes, Nuphar, Pediastrum) and wetland
(Sphagnum) plants and major shifts in diatom assemblages suggest pronounced lake-level
fluctuations and rapid ecosystem reorganization in response to LIA climatic deterioration.
Our results imply that temperature shifts of 1–28C, when accompanied by major changes in
moisture balance, can greatly alter high-altitudinal terrestrial, wetland, and aquatic
ecosystems, including conversion between boreal-forest tree line and tundra. The climatic
and ecosystem variations in our study area appear to be coherent with changes in solar
irradiance, suggesting that changes in solar activity contributed to the environmental
instability of the past 700 years.
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INTRODUCTION

Boreal ecosystems are highly sensitive to natural and

anthropogenic climatic change (e.g., MacDonald et al.

1993, Chapin et al. 2004). Recent studies (e.g., Chapin

and Starfield 1997, Alm et al. 1999, Weltzin et al. 2000,

Smith et al. 2005) provide strong evidence that green-

house warming will lead to pronounced alterations of the

forest–tundra ecotone and wetland/lake ecosystems in

boreal regions. For example, numerical modeling of

boreal-forest dynamics indicates that climatic warming

as little as 28C may result in the conversion from tundra

to boreal forest within 70–290 years near the forest–

tundra ecotone (Rupp et al. 2000). These projections are

in agreement with tree ring and comparative studies

showing that tundra communities have been invaded by

boreal trees in response to post–Little Ice Age climatic

warming (Suarez et al. 1999, Kullman 2002, Lloyd 2005).

The effects of climatic change on boreal ecosystems may

be exacerbated by the behavior of disturbance regimes

(Suffling 1995). In particular, forest fire interacts with

climatic change in a complex manner to exert great

influences on species composition and ecosystem pro-

cesses (e.g., energy fluxes and elemental cycles) on the

modern boreal landscape (Aber and Melillo 1991,

Chapin et al. 2004, Hu et al. 2006).
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High-resolution paleoecological analyses of lake

sediments using multiple proxy indicators offer an

opportunity to examine how ecosystems responded to

past climatic change at local to regional scales. Such

studies provide a means to evaluate simulation results

and help understand how ecosystems may respond to

climatic forcing (Heiri et al. 2006). However, high-

resolution paleorecords remain rare, and most existing

data do not provide quantitative information on past

climate and ecosystems. For instance, pollen records

from the boreal regions of northwestern America

typically have multicentennial sample resolutions, and

only recently have quantitative climatic reconstructions

been attempted (e.g., Hu et al. 2001, Palmer et al. 2002).

Although numerous paleoecological reconstructions

exist from the Alaskan boreal biome (e.g., Anderson

and Brubaker 1993, 1994, Tinner et al. 2006), the

sensitivity of the regional boreal forests to Holocene

climatic variations remains ambiguous. For example,

spruce tree line is not known to have extended farther

north in Alaska during the early Holocene when summer

temperatures were presumably 1–28C warmer than

today (Kaufman et al. 2004). Such paleoecological data

stand in contrast with simulated boreal-forest sensitivity

to future changes and imply the complexity of predicting

ecological response to climatic forcing in certain regions.

In this paper, we present a high-resolution multiproxy

data set from sediment analyses at Grizzly Lake (628430

N, 1448120 W, 720 m above sea level [asl]) in the Copper

River Basin, south of the Alaska Range. We focus on

the past 700 years, a period of marked climatic

oscillations in Alaska including the Little Ice Age

(LIA; e.g., Forester et al. 1989, Hu et al. 2001, Wiles

et al. 2002, Wiles et al. 2004). We use magnetic and

diatom-assemblage data to reconstruct soil/shoreline

erosion and lake-level changes. These results are coupled

with other paleoclimatic and paleoenvironmental series

from Alaska and elsewhere to disentangle temperature

and precipitation variations. The paleoclimatic informa-

tion is then compared with our high-resolution pollen,

macrofossil, and charcoal series to address the magni-

tude and direction of ecological changes during and

after the LIA.

STUDY SITE

Grizzly Lake is located in the northeastern edge of the

Copper River Basin, south of the Alaska Range (Fig. 1).

Human activity around the site was negligible until ;50

years ago when the Tok Cut-Off highway was con-

structed 200 m north of the lake. The lake has a surface

area of ;11 ha and a watershed area of ;125 ha. The

maximum water depth was 8.20 m in July 1999 and

2000. Today the lake is a topographically closed basin

with no major inlet and outlet. Aquatic macrophytes

(Isoetes muricata and Nuphar polysepalum) are present in

shallow areas of the lake.

On the moraine ridges around the lake, boreal forests

are dominated by Picea glauca (white spruce) with

Betula neoalaskana (Alaska tree birch) and Populus

tremuloides (aspen) as common constituents. Plant

communities dominated by Picea mariana (black spruce)

and Sphagnum spp. are prevalent in the extensive

lowlands of the Copper River Basin. P. mariana forms

nearly pure stands on the wet soils of lowlands south of

the lake. Within the region, P. glauca forms timberline

stands, and this species can reach maximum elevations

of 1000–1300 m asl. Locally near Grizzly Lake, P. glauca

timberline is at about 900–1000 m asl, and Alnus viridis

(green alder) thickets grow up to about 1100 m asl. On

gentle slopes with wet soils, P. mariana extends to

timberline (Viereck and Little 1994). The altitudinal

limits of P. mariana and Betula trees (mainly B.

neoalaskana, Alaska birch) are at ;800–900 m in the

study area (Hultén 1968); the elevation of Grizzly Lake

at 720 m asl is not far below the distribution limits of

these two tree species.

The study area has a boreal continental climate with

marked seasonal temperature variation. In Slana, ;10

km east of Grizzly Lake, the mean July and January

temperatures are 13.48C and �20.28C, respectively

(Western Regional Climate Center 2006). The mean

annual temperature is �3.38C, and the mean annual

precipitation 390 mm.

MATERIAL AND METHODS

Two parallel short cores (GYG and GYH, 1 m apart)

were taken with plexiglass tubes from the deepest part of

the lake. Core GYG contained an intact sediment–water

interface. For older sediments, long cores (including

FIG. 1. Map showing the locations of Grizzly Lake (GL),
Arolik Lake (AL), Farewell Lake (FL), and Kepler Lake (KL)
in Alaska, USA.
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GYA) were taken with a modified Livingstone piston

corer (Wright et al. 1984). The cores were correlated

according to lithostratigraphy and sectioned into con-

tinuous 1-cm slices for the analyses of pollen, macro-

fossils, charcoal, diatoms, and magnetic properties.

The chronology of the record is based on the linear

interpolation of six 210Pb ages (0–6 cm) on bulk

sediments and five accelerator-mass-spectrometry

(AMS) 14C ages on terrestrial macrofossils (Table 1,

Fig. 2). As with other studies of the latest Holocene, the

quality of our chronology is compromised by the

difficulties of dating samples .150 years old and ,500

years old. The 14C date at 14–15 cm was rejected because

its probability of being correct was very low (2.9%,

OxCal 3.5, Ramsey 1995; Fig. 2). Three neighboring AD

ages were amalgamated (OxCal 3.5) and connected with

linear interpolation to the oldest 210Pb date and the

subjacent AD ages (Fig. 2). A date from GYA (33–35

cm) verifies the stratigraphic correlation but is not

integrated into the chronology (Table 1, Fig. 2). We used

CALIB 5.01 (Stuiver et al. 1998, Reimer et al. 2004) to

convert 14C ages to ages in years AD. The mean sample

resolution is 14 years for all proxies.

For mineral-magnetic analysis, contiguous 1-cm

samples were freeze-dried and packed into prescreened

10-mL polystyrene pots. The samples were measured for

low- and high-field magnetic susceptibility (vlf and vhf),
from which frequency-dependent susceptibility (vfd) was
calculated (Fig. 3). We also measured anhysteretic

remanent magnetization (vARM) and saturation iso-

thermal remanent magnetization (SIRM) of 1 T (tesla;

magnetic flux density) and backfield IRM ratios

(IRM�20, IRM�40, IRM�100, and IRM�300). From these

results the interparametric ratio vfd/vARM was calcu-

lated, which has been shown to be sensitive to the

TABLE 1. 210Pb and 14C dates of Grizzly Lake, Alaska, USA.

Lab number Core Depth (cm) Material

210Pb, years AD
(mean 6 SD)

14C dates, years BP,
uncalibrated
(mean 6 SD) AD 95% CI�

Bern GYG 0–1 bulk 1993 6 0.3 1992–1994
Bern GYG 1–2 bulk 1980 6 2.1 1976–1984
Bern GYG 2–3 bulk 1972 6 2.3 1967–1977
Bern GYG 3–4 bulk 1963 6 2.3 1958–1968
Bern GYG 4–5 bulk 1937 6 6.1 1925–1949
Bern GYG 5–6 bulk 1899 6 12.9 1873–1925
Ua-19438� GYG 14–15 P, Picea N 485 6 45� 1319–1485�
Ua-19439 GYG 18–19 P, Picea N, Betula F,

Ledum L
330 6 35 1471–1643

Ua-19440 GYG 19–20 P, Picea N, Betula F 290 6 40 1483–1795
CAMS-84953 GYG 21–22 P, T, W 305 6 40 1474–1658
CAMS-66875 GYA 33–35 W 360 6 50 1449–1639
CAMS-84955 GYH 43–47 P, C, T, W, Betula F 385 6 40 1439–1634
CAMS-66876 GYA 73–75 T 1770 6 50 131–386

Notes: Abbreviations for Material column: C, charcoal; F, fruits; L, leaves; N, needles; P, periderm; T, twig; W, wood. The labs
are at the University of Bern, Bern, Switzerland (Bern); Tandem Laboratory, University of Uppsala, Uppsala, Sweden (Ua); and
Lawrence Livermore National Laboratory, Livermore, California, USA (CAMS). Two parallel short cores (GYG and GYH, 1 m
apart) were taken from the deepest part of the lake; core GYG contained an intact sediment–water interface. For older sediments,
long cores (including GYA) were taken.

� Calibration of radiocarbon dates is by Calib 5.01 (Stuiver et al. 1998).
� Rejected date.

FIG. 2. Age–depth plot of the Grizzly Lake cores. The inset
shows the age–depth model for the period after AD 1850 based
on 210Pb dating analysis of sediment. Those before AD 1850 are
based on calibrated radiocarbon dates of terrestrial plant
macrofossils. Solid circles show the dates of the analyzed cores
(parallel short cores 1 m apart, taken from the deepest part of
the lake: GYG [0–36 cm depth] and GYH [37–50 cm depth]),
and open squares show dates for the additional core GYA (long
core for older sediments). Data are presented as mean 6 2 SD.
The heavy 3 is a rejected date. For further information see
Material and Methods.
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presence of pyrogenically derived magnetic material

within burned soils (Gedye et al. 2000).

Diatom samples were prepared using standard tech-

niques involving 30% H2O2 and 10% HCl (Battarbee

1986). The taxonomy was primarily based on Krammer

and Lange-Bertalot (1986–1991; e.g., Krammer and

Lange-Bertalot 1986). In general, a minimum of 400

diatom valves were identified and enumerated using

10003 magnification and phase contrast optics. Some

samples (e.g., 40–25 cm; Fig. 4) contained extremely low

diatom concentrations, and therefore their counting

sums were lower. The diatom diagram was subdivided

into local assemblage zones by using the method of

optimal partitioning (Birks and Gordon 1985) as

implemented in the program ZONE (version 1.2; Lotter

and Juggins 1991). To determine the number of

statistically significant zones in the diagram, we used

the program BSTICK (Bennett 1996). The diatom-

inferred quantitative lake-level reconstruction is based

on a regional calibration set including 51 lakes, using

log-transferred lake depth data (Gregory-Eaves et al.

1999). All diatom data were square-root transformed

prior to the numerical analyses in order to stabilize the

variances (Birks 1998). Transfer functions were devel-

oped using weighted averaging partial least square (WA-

PLS) regression and calibration (ter Braak and Juggins

1993). After taxonomical harmonization between cali-

bration and fossil diatom data, our model for log-

transformed lake depth yielded a bootstrapped coeffi-

cient of determination (r2
boot) of 0.54 and a root mean

square error of prediction (RMSEPboot) of 0.28,

including one WA-PLS component. The summary

statistics of our WA-PLS model are almost identical to

the original log-transformed lake depth transfer function

(WA with classical deshrinking) that had r2 ¼ 0.53 and

RMSEPboot ¼ 0.31, respectively (Gregory-Eaves et al.

FIG. 3. Magnetic properties of the Grizzly Lake sediments. Low-frequency magnetic susceptibility (vlf) is a parameter
indicating the concentration of ferrimagnets (magnetite); frequency-dependent magnetic susceptibility (vfd) reflects the abundance
of ultrafine superparamagnetic (SP; 0–0.02 lm) grains. Anhysteretic remanent susceptibility (vARM) is a magnetic grain size
parameter sensitive to material slightly more coarse than the vfd parameter; SIRM is saturation isothermal remanent
magnetization. Abbreviations and methodology follow Gedye et al. (2000). For the core depth axis, the scale is uneven because of
changing sedimentation rates as indicated by the age–depth model (Fig. 2).
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1999). The reconstructed log-transformed lake depth

values, including their errors, were retransformed for

display.

Pollen preparation followed standard procedures

(Moore et al. 1991). Lycopodium tablets (Stockmarr

1971) were added to subsamples of 1 cm3 for estimating

pollen concentrations (pollen grains/cm3) and accumu-

lation rates (pollen grains�cm�2�yr�1). Nomenclature of

plant taxa followed the Flora of North America (2007).

Pollen type separation followed Clegg et al. (2005) for

Betula, Hansen and Engstrom (1985) for Picea, and

Punt et al. (2003) for Alnus. A minimum of 600 pollen

grains, excluding aquatic pollen and spores, were

counted at each level. Rarefaction analysis (Birks and

Line 1992) was performed on pollen–spore assemblages

(terrestrial and wetland types included). Zonation was

made using the same technique as for diatom analysis

(optimal partitioning, broken-stick model). Three pollen

subzones were also delimited but they were not

statistically significant (subzones GP-2a, 2b, 2c, Figs. 5

and 6). Preliminary detrended correspondence analysis

(DCA) was performed on the pollen and spore data set

to estimate the gradient lengths of the DCA axes. Given

the resulting gradient length of the first DCA axis of

1.236 standard deviation units, principal components

analysis (PCA) was selected to summarize the original

data set (Kovach 1995, Ammann et al. 2000). Pollen

percentages and concentrations show comparable strati-

graphic variations, suggesting that percentage values

were not affected by proportional problems (Fig. 7).

Microscopic charcoal particles .10 lm (or area .75

lm2) were counted in pollen slides (Tinner and Hu 2003,

Finsinger and Tinner 2005). For the analyses of

macroscopic charcoal and terrestrial macrofossils, sed-

iment samples of 15 cm3 were washed through a 200-lm
mesh screen, and macrofossils were identified following

standard keys (e.g., Lévesque et al. 1988) and reference

specimens.

RESULTS AND INTERPRETATION

Soil and lakeshore erosion

The sediment of the past 700 years is mainly fine-

detritus gyttja (Fig. 3). However, the intervals between

41 and 23 cm (AD 1490–1580) and between 16 and 10

cm (AD 1680–1805) contain conspicuously greater

amounts of silt and sand than the remainder of the

core. These silty and sandy gyttja layers are unsorted;

the silt, sand, and coarse organic debris are homoge-

nously admixed with the fine organic and inorganic

particles. This lithological texture argues against the

formation of the silty and sandy layers as a result of a

turbidite or a single short-lived subaquatic event (Fig.

FIG. 4. Diatom assemblages in the Grizzly Lake sediment, as percentage in sample. Relative diatom concentrations are
expressed (as percentages) per sediment dry mass and with reference to the uppermost sample (¼100%). All biozones are statistically
significant (Bennett 1996; see also Material and Methods). Abbreviations are as follows: TS, training set; GD, Grizzly Lake
diatoms.
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3); instead it points to long-lasting erosional input from

the lakeshore or from soils.

The mineral-magnetic record to a degree is related to

the lithological changes. A sharp increase in vlf, which
reflects an overall increase in the concentration of

magnetic material, corresponds to the sandy gyttja

layer (Fig. 3). The silty gyttja layer is less well defined in

the magnetic record, although a gradual rise in

vARM/SIRM points to a change in magnetic grain

size, possibly because of a change in sediment source.

Of particular interest is the vfd% record, which is

sensitive to the presence of superparametric grains (SP)

produced through pedogenic processes (e.g., Dearing

1999). High values of vfd% (.3–10%) are indicative of

soil-derived material, eroded from the catchment. The

low values of vfd% recorded here (i.e., ,2%) suggest

that the lithological changes cannot be attributed to the

inwash of mineral topsoil material. In contrast, the

consistent deviation between 20–40 cm likely reflects

the input of mineral material from exposed lakeshores

(e.g., after lake-level drops) and raw, un-weathered soils

in the lake catchment.

Although a series of catchment fires have been

identified within the charcoal record (Tinner et al.

2006), there is no clear fire signal (vfd/vARM) in the

magnetic record that would indicate pyrogenically

derived magnetic material in the sediment. This may

simply reflect that the majority of fire events was

restricted to the forest biomass, leaving the topsoil

unaffected, or that no burned mineral soil material made

its way into the lake.

The record of Cenococcum sclerotia (Fig. 5B) provides

unambiguous evidence that organic matter in the surface

soil (i.e., litter horizon) has been eroded and deposited

into the lake (Wick et al. 2003). The Cenococcum

sclerotia are most probably from Cenococcum geo-

philum, a ubiquitous ectomycorrhizal fungus living on,

in, or just below the litter horizon in both wetland and

upland sites (Thormann et al. 1999, Wurzburger et al.

2004). C. geophilum is associated with transient or

chronic environmental stress of trees in greenhouse

seedling studies and under natural field conditions (e.g.,

winter frost injuries; Webb et al. 1993), and its

colonization can be negatively correlated with the

FIG. 5. Aquatic pollen, spores, and macrofossils in the Grizzly Lake sediment. (A) Selected wetland and aquatic pollen and
spores as percentage of the total pollen sum (number of pollen grains counted). Pollen of aquatic plants and spores of pteridophytes
and bryophytes were excluded from the pollen sum. Statistically significant zone boundaries are depicted as solid lines (Bennett 1996;
see also Material and Methods). (B) Macrofossil concentrations in number per 15 cm3. Lines above solid curves indicate 10-fold
exaggeration so that low values are visible; solid curves show the true values. Abbreviations are as follows: GP, Grizzly Lake pollen;
SC, sclerotia; L, leaves; E, ephippia; SF, seed fragments; S, seeds; O, oogonia; ‘‘t.’’ following a taxon name indicates type.
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diversity of other mycorrhizal fungi (Glenn et al. 1991).

Thus the abundance of Cenococcum between AD 1490
and 1870 in our macrofossil diagram probably reflects

both physiological stress and erosion.
In summary, the magnetic and macrofossil records

reveal the erosion of soil organic litter but not the upper,
weathered soil horizons (A, B) between AD 1490 and

1870. Thus the composition of the inwashed organic

debris (e.g., Picea needles, Alnus viridis, tree Betula, and
B. nana remains; see Tinner et al. 2006) dated to AD

1490–1870 probably reflects that of the soil litter horizon
near the lakeshore. The associated silts and sands must

have derived primarily from exposed lakeshores, given
that the lake does not have a major inlet that could have

exposed and transported the C horizon of soils.

Lake and wetland ecosystems

Between AD 1280 and 1490, diatom assemblages were
dominated by planktonic taxa (e.g., Cyclotella glomera-

ta, C. pseudostelligera, C. michigiana; Fig. 4; zone GD-
1). Simultaneously with the lithostratigraphic change

from AD 1490–1580, an overall decrease in diatom
concentrations and major shifts in species composition

occurred (zone GD-2). C. glomerata and Fragilaria
pinnata decreased in abundance, whereas Pinnularia

borealis increased. P. borealis often grows in soils and as

moss epiphyte with airborne dispersal (Marshall and
Chalmers 1997), and Nitzschia amphibia can tolerate a

broad range of ecological conditions. Some of the

diatom species in zone GD-1 recovered after AD 1580

(e.g., F. pinnata, zone GD-3), but most of them were not

abundant again until AD 1830 (zone GD-4). Around

AD 1830, C. glomerata, a planktonic species that often

blooms during late summer (Sorvari et al. 2002), became

reestablished (GD-5). During the second half of the 20th

century, this species was gradually replaced by Fragilaria

brevistriata and F. pinnata (zone GD-6). The most recent

diatom-assemblage change (Fig. 4; zone GD-6) was

possibly caused by an increased influx of nutrients from

human activity in the lake catchment during the past

several decades (e.g., by the camping facilities on the

northern portion of the lakeshore).

Pollen, spores, and microscopic algae suggest the

abundance of aquatic plants, such as Potamogeton,

Nuphar, Isoetes, and Pediastrum between AD 1280 and

1490 in Grizzly Lake (Fig. 5; zone GP-1). Between AD

1490 and 1580 (zone GP-2a) and between AD 1620 and

1850 (zone GP-2c), microscopic remains of aquatic

plants (Nuphar, Isoetes, Pediastrum) were less abundant

or even disappeared, and pollen and spores of wetland

and lakeshore plants (Alnus incana, Salix, Cyperaceae,

Poaceae, Sphagnum, Equisetum; Fig. 5) decreased

greatly. These data suggest that most aquatic macro-

phytes either stopped reproducing sexually or died out.

The conspicuous amounts of Sphagnum leaves in the

sediment of AD 1490 and 1870 (Fig. 5B) probably reflect

inwash of coarser organic debris from the soil litter

horizon. Macrofossil increases associated with pollen

decreases have been found for other important taxa,

such as Picea and tree Betula (Tinner et al. 2006) and are

interpreted in a similar way, with pollen reflecting tree

declines (see Fig. 6) and macrofossils suggesting

increased local inwash. Similar to Sphagnum spores,

Daphnia ephippia were absent or in very low abundances

from AD 1490 to ;AD 1890, probably reflecting major

population collapses or dilution by mineral matter (Fig.

5B). A transient and partial recovery of wetland and

aquatic vegetation occurred at AD 1580–1620 AD (zone

GP-2b; Fig. 5). Aquatic and wetland vegetation fully

recovered between AD 1810 and 1870 (around the zone

boundary GP-2/GP-3), and it remained relatively stable

until today (zone GP-3).

The diatom record of Grizzly Lake helps us under-

stand the causes of the wetland and aquatic changes.

Diatom concentrations and assemblages suggest low

lake levels between AD 1490 and 1830 (Fig. 4) when

planktonic species decreased and allochthonous input

(species related to moist-soil habitats) partly increased.

Although the magnitude of the lake-level variations at

Grizzly Lake is rather uncertain because of the

considerable sample-specific errors of the lake depth

reconstruction, lake levels might have been lower by

several meters during the period AD 1490–1830 than

before and after (Fig. 8). Such significant lake-level

fluctuations would have considerably affected the

aquatic macrophyte populations (as revealed by pollen,

spores, and macrofossils). Furthermore, if they reflect

FIG. 5. Continued.
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ground water table oscillations around the lake, these

fluctuations provide a plausible explanation for dimin-
ished wetland communities.

Taken together the diatom, pollen, spore, and

macrofossil records suggest that aquatic and wetland

habitats (e.g., fens, bogs, floodplains) were reduced
because of low water levels. Grizzly Lake has no major

inlet and outlet streams. In such a basin, the lake level is

primarily influenced by groundwater through precipita-
tion and (temperature-controlled) evapotranspiration.

We therefore assume that the lake-level drops primarily

reflect precipitation decreases in the Grizzly Lake area
during the LIA.

Terrestrial vegetation and fire

Terrestrial ecosystems covaried with the aquatic and
wetland changes. The pollen data suggest boreal forests

with Picea mariana as the dominant tree between AD

1280 and 1490 (Fig. 6 zone GP-1), likely in the lowland
area south of the lake. Other important tree taxa were

Betula and P. glauca, which probably occupied dry

moraine ramparts and south-facing slopes near the lake
together with isolated Populus trees. The pollen of Alnus

viridis probably originated from thickets growing on

disturbed soils (e.g., avalanche couloirs, landslides,

lakeshores, floodplains) and near timberline. Betula
shrubs were prevalent in open boggy areas and/or above

tree line, as indicated by the abundance of shrub birch

pollen at Grizzly Lake. P. mariana, P. glauca, and tree

Betula pollen decreased in abundance around AD 1490

(beginning of zone GP-2a). Corresponding to these
changes are marked increases in the pollen values of

Alnus viridis t., Epilobium, Lycopodium annotinum, and

L. clavatum, as well as moderate rises in shrub Betula,
Artemisia, Aconitum, and monolete spores (ferns). These

changes suggest the expansion of cold-adapted or

disturbance-adapted vegetation dominated by shrub
and herbaceous taxa (e.g., A. viridis, Epilobium, Aconi-

tum) at the expense of Picea forests. Between AD 1580

and 1620 (zone GP-2b), pollen assemblages are similar

to those before AD 1500, pointing to a transient
recovery of forest communities. Forest communities

collapsed again after AD 1620 (zone GP-2c), giving way

to a repeated expansion of shrubs, tall herbs, and club
mosses. This phase was interrupted ;150 years ago,

when pollen assemblages suggest the reestablishment of

boreal forests (zone GP-3). Apparently boreal commu-

nities were resilient enough to adjust rapidly to climatic
changes during and after the LIA. The period from AD

1580–1620 seems too short for a full recovery of boreal

forests, and it is possible that the pollen signal (Fig. 6)
reflects productivity changes (e.g., increased bloom of

surviving trees). However, forest expansion on glacier

forefields in response to glacier retreats at AD 1550–
1670 has been unambiguously documented in the tree

ring records of the Wrangell Mountains, close to Grizzly

Lake (Wiles et al. 2002). Within the limits of chrono-

logical reliability, the rapidity of the vegetational change

FIG. 6. Terrestrial pollen, spores, and charcoal in the Grizzly Lake sediment; ‘‘t.’’ following a taxon name indicates type.
Statistically significant biozone boundaries are depicted as solid lines. Stars on the right show the occurrence of local fires (Tinner et
al. 2006). Lines above solid curves indicate 10-fold exaggeration so that low values are visible; solid curves show the true values.
Microscopic (micr.) charcoal concentrations and influx are also given.
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is remarkable: pollen-inferred collapses and recoveries of
boreal vegetation during the period AD 1500–1900

occurred within ;20–100 years (Fig. 6).
In addition to pronounced vegetational changes, the

fire regime varied substantially in the Grizzly Lake

region over the last 700 years, as suggested by
stratigraphic changes in microscopic charcoal concen-
tration and influx values (Fig. 6). These values are

particularly high between AD 1500–1580 and AD 1700–
1780, indicating increased occurrence of forest fires
within the region (20–50 km; see MacDonald et al. 1991,

Tinner et al. 1998, Whitlock and Larsen 2001).
Macroscopic charcoal analysis and estimation of mean
fire intervals (MFI) suggest the occurrence of four fire

episodes dated to AD 1580, 1640, 1740, and 1920
around Grizzly Lake (Fig. 6; for details about MFI
calculation and identification of local fires see Tinner et

al. 2006).

DISCUSSION

Little Ice Age climatic fluctuations

Our results provide evidence for climatic and ecosys-

tem fluctuations during the past 700 years in the Grizzly
Lake area, and these fluctuations were probably related
to the LIA. During the LIA between AD 1500 and 1850,

summer temperatures decreased by about 0.3–0.58C on

average over the Northern Hemisphere (Mann 2000,

Jones et al. 2001, Briffa and Osborn 2002). The

magnitudes of the LIA climatic fluctuations in Alaska

(Hu et al. 2001, Davi et al. 2003) were greater than the

averaged estimates for the Northern Hemisphere. For

example, d18O data from Farewell Lake in the north-

western Alaska Range (Fig. 8) suggest that LIA

culminated around AD 1700 when summer temperature

was up to 1.78C lower than at present (Hu et al. 2001).

Additional evidence of climatic change during the past

700 years in Alaska includes glacier advances during the

coldest episodes of the LIA, burying forest stands in

front of glaciers (Fig. 8; Wiles et al. 1999, 2002, Calkin et

al. 2001).

Although LIA climatic cooling appeared to have

occurred across various areas of Alaska (Jacoby and

D’Arrigo 1989, Wiles et al. 1999, 2002, Calkin et al.

2001, Hu et al. 2001, Davi et al. 2003), evidence is more

complicated for changes in moisture availability. At

Farewell Lake, d18O and trace-element composition

suggest increased moisture availability during the LIA

(Hu et al. 2001). In contrast, our diatom results from

Grizzly Lake show lower lake levels during the LIA,

suggesting decreased moisture availability. This diatom-

based inference is consistent with an LIA precipitation

reconstruction on the basis of ostracode assemblages at

FIG. 7. Pollen and spore concentrations (selected types), along with microscopic charcoal concentration and influx; ‘‘t.’’
following a taxon name indicates type. Lines above solid curves indicate 10-fold exaggeration so that low values are visible; solid
curves show the true values.
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Kepler Lake near Anchorage, ;300 km southwest of
Grizzly Lake (Fig. 1, Forester et al. 1989). Although
these results should be verified with additional paleo-

climatic studies, spatial variations of precipitation
within this vast region were evident for the last 50 years
(Hess et al. 2001) and should be expected for the late

Holocene.
Glaciers are sensitive to climatic change, including

both temperature and precipitation oscillations. Past
glacier fluctuations have therefore been used to recon-
struct climatic changes, but considerable uncertainties

exist about the relative contributions of precipitation
and temperature changes to glacier growth. Glacier
advances such as those recorded in the geomorphic and

tree ring data of Alaska (e.g., Calkin et al. 2001, Wiles et
al. 2002) mainly reflect decreased summer temperatures

and/or increased winter precipitation (Dowdeswell et al.
1997, Nesje and Dahl 2003), and summer precipitation
and winter temperature are less important. A recent

synthesis of data from 130 Alaskan glaciers shows that

mountain glacier fluctuations during the past millenni-
um were primarily caused by summer cooling, probably
as a consequence of decreased solar activity (Wiles et al.

2004).
This interpretation of solar-induced glacial fluctua-

tions agrees with that of Hu et al. (2003), who show

connections among solar irradiance, Alaskan climate,
and tundra ecosystems during the Holocene. Biogenic-

silica, isotopic, and pollen records from the sediments of
Arolik Lake in comparison with cosmonuclide (10Be,
14C) time series suggest increased temperatures and

precipitation during periods of increased solar irradi-
ance. At this site, effects on tundra ecosystems included
higher lake (and especially diatom) productivity and the

expansion of Betula shrubs in tundra communities.
Conversely, periods of diminished solar radiation

resulted in colder and drier environments with the
reductions of lake productivity and Betula shrub density
(Hu et al. 2003). Similarly, pollen assemblages from

Grizzly Lake suggest the reduction of boreal-forest trees

FIG. 8. Comparison of selected summary curves from Grizzly Lake with glacial oscillations (Calkin et al. 2001, Wiles et al.
2002), d18O-based temperature estimates from Farewell Lake (Hu et al. 2001), and reconstructed total solar irradiance (Bard et al.
2000). (A) The percentage of pollen attributed to trees reflects the relevance of boreal forests during the past 700 years. (B) The
percentage of pollen and spores attributed to water plants; Pediastrum algae remains are not included. (C) Axis 1 of principal
components analysis (PCA) accounts for 83% of the data variance. (D) Pollen diversity (number of pollen types represented in the
pollen sample) was estimated by rarefaction analysis with a minimum sum of 618. (E) The percentage of diatoms attributed to
planktonic taxa preferring deep water conditions. (F) Reconstruction of water depth at Grizzly Lake is based on diatom transfer
functions from Alaskan lakes (Gregory-Eaves et al. 1999). The thin lines delimit the 95% confidence interval. (G) The bars on the
left and right sides represent glacial advances and retreats, respectively. The glacier retreat between AD 1544 and 1676 is defined by
12 age ranges of tree growth obtained from 48 tree ring dates of logs overrun by ice in the Wrangell Mountains, Alaska (Wiles et al.
2002). The fine bars represent the standard deviations of the 12 age ranges (1544 6 32 and 1676 6 38). One age range of tree growth
from Kuskulana (AD 1387–1716) was excluded since it is not in agreement with other records from Chisana, Nizina, Barnard,
Kennicott, and Kuskulana (see Wiles et al. 2002). The arrow marks the progressive advance, and the star the attainment of
maximum LIA (Little Ice Age) advance positions at important glaciers of the coastal area (Bering glacier, McCarty Fiord, Aialik
Bay, Northwestern Fiord; see Calkin et al. 2001). Moraines (Mo) document maximum glacier advances in the coastal area and
south-central Alaska at around AD 1800–1900 (minimum ages; Calkin et al 2001). (H) The temperature reconstruction from
Farewell Lake primarily relies on oxygen isotope measurements on abiotic carbonates and benthic ostracodes. The D temperature
values show departures of past surface water temperature during the growing season from the present (Hu et al. 2001). (I) The
reconstruction of solar irradiance is based on smoothed cosmonuclide (14C and 10Be) production rates (Bard et al. 2000; 0.25%
Maunder minimum irradiance reduction curve). LIA sunspot minima: D, Dalton; M, Maunder; S, Spörer; W, Wolf. Shaded
intervals are times of low solar irradiance.
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along with the expansion of A. viridis and B. nana during

the colder and drier LIA (Fig. 6), and within 14C dating

uncertainties, the two most pronounced minima of solar

radiation (AD 1450–1580, AD 1660–1720 AD; Fig. 8)

corresponded to the disruptions of wetland and boreal

habitats. Together, the data from Arolik and Grizzly

Lakes suggest that boreal and tundra ecosystems may

have been quite sensitive to Holocene climatic changes

in relation to subtle fluctuations of solar irradiance.

Responses of terrestrial and aquatic ecosystems

to Little Ice Age climatic shifts

Our paleoecological data from Grizzly Lake show

dramatic and rapid changes of boreal ecosystems in

response to the LIA climatic fluctuations. These changes

included the decline of Picea–Betula forests and the

expansion of tundra, and they were probably driven by

variations in temperature, precipitation, and fire regime.

Pollen PCA indicates that the principal taxa involved

were Picea mariana, Alnus viridis, Epilobium (see Plate

1), and Betula trees (cumulative fit per taxon [CFIT] as a

fraction of variance of species taxa for axis one: 0.988,

0.882, 0.277, and 0.269, respectively; for interpretation

of CFIT see Legendre and Gallagher 2001). At Grizzly

Lake, P. mariana and Betula trees are 100–200 m below

their altitudinal limits today (Hultén 1968). By assuming

a lapse rate of 78C/km, temperature changes of .0.7–

1.48C as estimated for the LIA may have resulted in

lethal (frost) damages on these tree species. As suggested

by ecological observations and model simulations, lethal

frost damages can lead to abrupt declines of ecotone or

boreal vegetation within a few years (Kullman 1991,

Bugmann and Pfister 2000), whereas recoveries involv-

ing population buildups require more time (decades to

centuries). Thus during the LIA, P. mariana and Betula

trees probably occurred at altitudes 600–700 m asl and

disappeared almost completely around Grizzly Lake.

Physiological stresses induced by severe frost and

increased erosion of surface soils would explain the high

abundance of Cenococcum remains in the sediments of

Grizzly Lake. Compared with P. mariana and tree

Betula, A. viridis and Betula glandulosa/nana are more

adapted to cold conditions and disturbance, so that

these species could have benefited from the forest

collapse. In agreement, Alnus viridis and Betula glan-

dulosa/nana form thickets beyond altitudinal and

latitudinal tree line today (e.g., in the tundra north of

the Brooks Range; Viereck and Little 1994, Gallant et

al. 1995).

Since summer precipitation deficits are not the

primary limiting factor for the occurrence of forests in

Alaska near altitudinal tree line (Arno and Hammerly

1993), it seems unlikely that a precipitation decrease

could have directly contributed to the expansion of

tundra at the expense of boreal forests. Instead, it is

plausible that the reduction of precipitation increased

PLATE 1. A burned spruce forest near Tok in central-east Alaska two years after fire. The vegetation is dominated by
herbaceous species such as fireweed (Epilobium angustifolium, flowering). The spruce forest will become established after some
decades, following an intermediate successional phase with deciduous shrubs such as scrub birch (Betula glandulosa) or Alaska
birch (B. neoalaskana) and quaking aspen (Populus tremuloides). Photo credit: W. Tinner.
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fuel flammability and thus fire frequency and/or

severity. In addition, the high mortality of trees during

the LIA (low-temperature driven) probably increased

fuel flammability and abundance (increase of dead

biomass) and thus promoted fire occurrence. These

changes in turn would have resulted in the expansion of

disturbance-adapted taxa (e.g., Epilobium, A. viridis), as

evident in our pollen record (see Fig. 6). This

interpretation is consistent with the observation in

interior Alaska that recent burned areas were initially

colonized by Epilobium angustifolium (Viereck and Little

1994, Gallant et al. 1995). This vegetation is usually

replaced by shrub communities, broadleaf forests, and

ultimately Picea forests decades to centuries after fire

(Viereck and Little 1994, Gallant et al. 1995). Our data

suggest that fire frequency and/or severity decreased and

fire-adapted taxa declined in response to climatic

amelioration (warmer, moisture conditions) at the end

of the LIA. Similar linkages among climate, fire

disturbance, and vegetation response occurred during

other periods of the Holocene at Grizzly Lake (Tinner et

al. 2006).

Other factors may have contributed to changes in fire

importance at Grizzly Lake over the past 700 years. For

example, evidence exists that native people in adjacent

Canada intentionally set fires to enhance moose browse

(Workman 1978). However, the close connections

among fire, climatic, aquatic, and vegetation changes

imply that pre-European human activities at most

amplified climatic impact on fire regimes. In the Pacific

Northwest, Whitlock and Knox (2002) reached a similar

conclusion and emphasized that the close correlation

among vegetation, fire regime, and climate variability as

inferred from paleorecords is a convincing measure of

the prevalence of climate relative to other potential

causes of vegetation and fire regime variability.

Additional studies are needed to verify our inference

that fire importance decreased during the warmer time

intervals of the past 700 years. This inference implies

that moisture changes were a more important control

for fire occurrence than temperature variations. Such a

climate–fire relationship has also been documented in

other areas of the North American boreal biome

(Bergeron and Archambault 1993, Johnson et al. 1999,

Bergeron et al. 2001). Together, these data suggest that

future climatic warming may not necessarily result in

increased fire occurrence and that predictions for boreal

ecosystems in regard to climatic change should assess

moisture effects (see Flannigan et al. 1998, 2001).

Effects of LIA cooling on aquatic and wetland

ecosystems were most likely exacerbated by drier

climatic conditions in the Grizzly Lake region. Our

data suggest that lake-level and groundwater drops led

to reduced abundance or dieback of aquatic organisms

(e.g., Pediastrum algae, Isoetes, Daphnia; Fig. 5) as well

as diminished shoreline and wetland habitats. The

complete disappearance of many microfossils of wet-

land organisms during periods of low water level

contributed substantially to the diversity reduction

(Fig. 8). Experimental studies (e.g., methane measure-

ments from peat incubation, manipulations of water

table elevation in soil monoliths from bogs and fens)

suggest that wetland changes are often triggered by

water table variations (Brown 1998, Weltzin et al. 2000).

Ecological studies document irreversible degradation of

Sphagnum lawns in response to summer drought (Alm

et al. 1999) and decomposition of peat in fens and bogs

under dry summer conditions (Shurpali et al. 1995,

Wieder 2001, Bubier et al. 2003, Lafleur et al. 2003).

Thus persistent droughts can lead to large-scale

contraction of wetland habitats within a few decades

(Moore 2002). At Grizzly Lake, the negative impacts of

water balance changes on wetland ecosystems were

probably reinforced by shorter growing seasons during

the LIA and by enhanced erosional input into the lake

(Figs. 3 and 5).

Implications for the sensitivity of boreal ecosystems

to climatic change

Almost all existing pollen records from Alaska suggest

that the boreal forests have remained relatively stable

since they became established ;7000 years ago (6000
14C yr BP; see Hu et al. 1998). Moreover, Picea tree line

is not known to have extended farther north than today

in Alaska during the early Holocene (Anderson and

Brubaker 1994), when summer temperature was prob-

ably about 1–28C higher than at present because of high

summer solar irradiance (Kaufman et al. 2004). Such a

vegetational inertia in Alaska seems striking, especially

in the context of paleoecological evidence showing that

early Holocene Picea tree line was farther north than at

present in far northwestern Canada (Ritchie et al. 1983)

and that warm climatic conditions during the middle

Holocene also resulted in rapid invasion of tundra by

Picea in central Canada (MacDonald et al. 1993). Our

LIA data from Grizzly Lake do not directly contribute

to understanding the lack of evidence for Holocene

latitudinal tree line shifts in Alaska. Nonetheless, these

new data and those reported in Tinner et al. (2006)

suggest that boreal ecosystems near altitudinal tree line

can be highly sensitive to climatic change. Marked

vegetational shifts at Grizzly Lake over the past seven

centuries can be attributed to the sensitivity of two

important tree taxa (P. mariana and Betula) near their

uppermost altitudinal limit and to feedback processes

that may have amplified climatic impacts (e.g., forest

recovery in response to combined effects of climatic

warming and decreased fire disturbance). These results

concur with tree ring and comparative studies showing

that boreal trees invaded tundra communities in

response to climatic warming after the LIA (Suarez et

al. 1999, Kullman 2002, Lloyd 2005). In agreement,

computer simulations also indicate the conversion of

tundra to boreal forests as a result of temperature

changes comparable to those at the end of the LIA (e.g.,

28C; Rupp et al. 2000).
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The magnitudes of LIA temperature fluctuations are

at the lower end of those projected for the future

(Intergovernmental Panel on Climate Change 2001).

Thus the pronounced shifts in aquatic and terrestrial

ecosystems related to the LIA, as revealed by our

paleorecord, imply that future warming may result in

major shifts in the altitudinal forest–tundra boundary in

the Copper River Basin. This interpretation supports

model simulations suggesting heightened sensitivity of

high-latitude and high-altitude environments to climatic

forcing (e.g., Starfield and Chapin 1996, Chapin and

Starfield 1997, Flannigan et al. 1998, 2001, Bugmann

and Pfister 2000, Rupp et al. 2002, Heiri et al. 2006).

Our data also highlight that ecosystem responses to

temperature shifts can be amplified by associated

moisture balance changes and fire regime feedbacks.

Projections of future changes will therefore require

consideration of a number of interactive factors,

including those discussed here, and landscape domina-

tion by humans (Overpeck et al. 2003). Recent studies

(Hu et al. 1998, 2001, Wiles et al. 2004, Anderson et al.

2005) provide strong evidence for climatic fluctuations

in Alaska during the late Holocene when climatic

boundary conditions were similar to those of today.

Additional high-resolution studies of ecological respons-

es to these climatic fluctuations using the multiproxy

approach are important for verifying our results from

Grizzly Lake and for validating model simulations of

future changes.
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