744 research outputs found

    Functional Trade-Offs in Promiscuous Enzymes Cannot Be Explained by Intrinsic Mutational Robustness of the Native Activity.

    Get PDF
    The extent to which an emerging new function trades off with the original function is a key characteristic of the dynamics of enzyme evolution. Various cases of laboratory evolution have unveiled a characteristic trend; a large increase in a new, promiscuous activity is often accompanied by only a mild reduction of the native, original activity. A model that associates weak trade-offs with "evolvability" was put forward, which proposed that enzymes possess mutational robustness in the native activity and plasticity in promiscuous activities. This would enable the acquisition of a new function without compromising the original one, reducing the benefit of early gene duplication and therefore the selection pressure thereon. Yet, to date, no experimental study has examined this hypothesis directly. Here, we investigate the causes of weak trade-offs by systematically characterizing adaptive mutations that occurred in two cases of evolutionary transitions in enzyme function: (1) from phosphotriesterase to arylesterase, and (2) from atrazine chlorohydrolase to melamine deaminase. Mutational analyses in various genetic backgrounds revealed that, in contrast to the prevailing model, the native activity is less robust to mutations than the promiscuous activity. For example, in phosphotriesterase, the deleterious effect of individual mutations on the native phosphotriesterase activity is much larger than their positive effect on the promiscuous arylesterase activity. Our observations suggest a revision of the established model: weak trade-offs are not caused by an intrinsic robustness of the native activity and plasticity of the promiscuous activity. We propose that upon strong adaptive pressure for the new activity without selection against the original one, selected mutations will lead to the largest possible increases in the new function, but whether and to what extent they decrease the old function is irrelevant, creating a bias towards initially weak trade-offs and the emergence of generalist enzymes.This work was supported by the Natural Sciences and Engineering Research Council of Canada (NSERC, Discovery Grant RGPIN 418262- 12, http://www.nserc-crsng.gc.ca/), the Biotechnology and Biological Sciences Research Council (BBSRC, Grant BB/L002469/1, http://www. bbsrc.ac.uk/), the European Research Council (ERC, Advanced Investigator Grant 695669, https:// erc.europa.eu/), and the Human Frontiers Science Program (Grant RGP0006/2013, http://www.hfsp. org/). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscrip

    Experiments with explicit filtering for LES using a finite-difference method

    Get PDF
    The equations for large-eddy simulation (LES) are derived formally by applying a spatial filter to the Navier-Stokes equations. The filter width as well as the details of the filter shape are free parameters in LES, and these can be used both to control the effective resolution of the simulation and to establish the relative importance of different portions of the resolved spectrum. An analogous, but less well justified, approach to filtering is more or less universally used in conjunction with LES using finite-difference methods. In this approach, the finite support provided by the computational mesh as well as the wavenumber-dependent truncation errors associated with the finite-difference operators are assumed to define the filter operation. This approach has the advantage that it is also 'automatic' in the sense that no explicit filtering: operations need to be performed. While it is certainly convenient to avoid the explicit filtering operation, there are some practical considerations associated with finite-difference methods that favor the use of an explicit filter. Foremost among these considerations is the issue of truncation error. All finite-difference approximations have an associated truncation error that increases with increasing wavenumber. These errors can be quite severe for the smallest resolved scales, and these errors will interfere with the dynamics of the small eddies if no corrective action is taken. Years of experience at CTR with a second-order finite-difference scheme for high Reynolds number LES has repeatedly indicated that truncation errors must be minimized in order to obtain acceptable simulation results. While the potential advantages of explicit filtering are rather clear, there is a significant cost associated with its implementation. In particular, explicit filtering reduces the effective resolution of the simulation compared with that afforded by the mesh. The resolution requirements for LES are usually set by the need to capture most of the energy-containing eddies, and if explicit filtering is used, the mesh must be enlarged so that these motions are passed by the filter. Given the high cost of explicit filtering, the following interesting question arises. Since the mesh must be expanded in order to perform the explicit filter, might it be better to take advantage of the increased resolution and simply perform an unfiltered simulation on the larger mesh? The cost of the two approaches is roughly the same, but the philosophy is rather different. In the filtered simulation, resolution is sacrificed in order to minimize the various forms of numerical error. In the unfiltered simulation, the errors are left intact, but they are concentrated at very small scales that could be dynamically unimportant from a LES perspective. Very little is known about this tradeoff and the objective of this work is to study this relationship in high Reynolds number channel flow simulations using a second-order finite-difference method

    Two new species of Centroptilum Eaton, 1869 from North Africa (Ephemeroptera, Baetidae).

    Get PDF
    Based on recently collected larvae from Algeria and Morocco, the species delimitation within the genus Centroptilum Eaton, 1869 in that region is validated. Two new species are described and illustrated, one from north-eastern Algeria, and one from North Morocco, using an integrated approach with morphological and molecular evidence. A table summarising the morphological differences between the new species and Centroptilumluteolum (Müller, 1776) from Central Europe is provided. Further, molecular evidence for additional undescribed species of Centroptilum in other regions of the West Palearctic is provided and discussed

    Childhood neurodevelopment after prescription of maintenance methadone for opioid dependency in pregnancy:a systematic review and meta-analysis

    Get PDF
    Aim: To systematically review and meta‐analyse studies of neurodevelopmental outcome of children born to mothers prescribed methadone in pregnancy. Method: MEDLINE, Embase, and PsycINFO were searched for studies published from 1975 to 2017 reporting neurodevelopmental outcomes in children with prenatal methadone exposure. Results: Forty‐one studies were identified (2283 participants). Eight studies were amenable to meta‐analysis: at 2 years the Mental Development Index weighted mean difference of children with prenatal methadone exposure compared with unexposed infants was −4.3 (95% confidence interval [CI] −7.24 to −1.63), and the Psychomotor Development Index weighted mean difference was −5.42 (95% CI −10.55 to −0.28). Seven studies reported behavioural scores and six found scores to be lower among methadone‐exposed children. Twelve studies reported visual outcomes: nystagmus and strabismus were common; five studies reported visual evoked potentials of which four described abnormalities. Factors that limited the quality of some studies, and introduced risk of bias, included absence of blinding, small sample size, high attrition, uncertainty about polydrug exposure, and lack of comparison group validity. Interpretation: Children born to mothers prescribed methadone in pregnancy are at risk of neurodevelopmental problems but risk of bias limits inference about harm. Research into management of opioid use disorder in pregnancy should include evaluation of childhood neurodevelopmental outcome

    Perturbation with Intrabodies Reveals That Calpain Cleavage Is Required for Degradation of Huntingtin Exon 1

    Get PDF
    Background: Proteolytic processing of mutant huntingtin (mHtt), the protein that causes Huntington's disease (HD), is critical for mHtt toxicity and disease progression. mHtt contains several caspase and calpain cleavage sites that generate N-terminal fragments that are more toxic than full-length mHtt. Further processing is then required for the degradation of these fragments, which in turn, reduces toxicity. This unknown, secondary degradative process represents a promising therapeutic target for HD. Methodology/Principal Findings: We have used intrabodies, intracellularly expressed antibody fragments, to gain insight into the mechanism of mutant huntingtin exon 1 (mHDx-1) clearance. Happ1, an intrabody recognizing the proline-rich region of mHDx-1, reduces the level of soluble mHDx-1 by increasing clearance. While proteasome and macroautophagy inhibitors reduce turnover of mHDx-1, Happ1 is still able to reduce mHDx-1 under these conditions, indicating Happ1-accelerated mHDx-1 clearance does not rely on these processes. In contrast, a calpain inhibitor or an inhibitor of lysosomal pH block Happ1-mediated acceleration of mHDx-1 clearance. These results suggest that mHDx-1 is cleaved by calpain, likely followed by lysosomal degradation and this process regulates the turnover rate of mHDx-1. Sequence analysis identifies amino acid (AA) 15 as a potential calpain cleavage site. Calpain cleavage of recombinant mHDx-1 in vitro yields fragments of sizes corresponding to this prediction. Moreover, when the site is blocked by binding of another intrabody, V_L12.3, turnover of soluble mHDx-1 in living cells is blocked. Conclusions/Significance: These results indicate that calpain-mediated removal of the 15 N-terminal AAs is required for the degradation of mHDx-1, a finding that may have therapeutic implications

    SAMPI: Protein Identification with Mass Spectra Alignments

    Get PDF
    BACKGROUND: Mass spectrometry based peptide mass fingerprints (PMFs) offer a fast, efficient, and robust method for protein identification. A protein is digested (usually by trypsin) and its mass spectrum is compared to simulated spectra for protein sequences in a database. However, existing tools for analyzing PMFs often suffer from missing or heuristic analysis of the significance of search results and insufficient handling of missing and additional peaks. RESULTS: We present an unified framework for analyzing Peptide Mass Fingerprints that offers a number of advantages over existing methods: First, comparison of mass spectra is based on a scoring function that can be custom-designed for certain applications and explicitly takes missing and additional peaks into account. The method is able to simulate almost every additive scoring scheme. Second, we present an efficient deterministic method for assessing the significance of a protein hit, independent of the underlying scoring function and sequence database. We prove the applicability of our approach using biological mass spectrometry data and compare our results to the standard software Mascot. CONCLUSION: The proposed framework for analyzing Peptide Mass Fingerprints shows performance comparable to Mascot on small peak lists. Introducing more noise peaks, we are able to keep identification rates at a similar level by using the flexibility introduced by scoring schemes

    Nonsystem Reasons for Delay in Door-to-Balloon Time and Associated In-Hospital Mortality A Report From the National Cardiovascular Data Registry

    Get PDF
    ObjectivesThe goal of this study was to characterize nonsystem reasons for delay in door-to-balloon time (D2BT) and the impact on in-hospital mortality.BackgroundStudies have evaluated predictors of delay in D2BT, highlighting system-related issues and patient demographic characteristics. Limited data exist, however, for nonsystem reasons for delay in D2BT.MethodsWe analyzed nonsystem reasons for delay in D2BT among 82,678 ST-segment elevation myocardial infarction patients who underwent primary percutaneous coronary intervention within 24 h of symptom onset in the CathPCI Registry from January 1, 2009, to June 30, 2011.ResultsNonsystem delays occurred in 14.7% of patients (n = 12,146). Patients with nonsystem delays were more likely to be older, female, African American, and have greater comorbidities. The in-hospital mortality for patients treated without delay was 2.5% versus 15.1% for those with delay (p < 0.01). Nonsystem delay reasons included delays in providing consent (4.4%), difficult vascular access (8.4%), difficulty crossing the lesion (18.8%), “other” (31%), and cardiac arrest/intubation (37.4%). Cardiac arrest/intubation delays had the highest in-hospital mortality (29.9%) despite the shortest time delay (median D2BT: 84 min; 25th to 75th percentile: 64 to 108 min); delays in providing consent had a relatively lower in-hospital mortality rate (9.4%) despite the longest time delay (median D2BT: 100 min; 25th to 75th percentile: 80 to 131 min). Mortality for delays due to difficult vascular access, difficulty crossing a lesion, and other was also higher (8.0%, 5.6%, and 5.9%, respectively) compared with nondelayed patients (p < 0.0001). After adjustment for baseline characteristics, in-hospital mortality remained higher for patients with nonsystem delays.ConclusionsNonsystem reasons for delay in D2BT in ST-segment elevation myocardial infarction patients presenting for primary percutaneous coronary intervention are common and associated with high in-hospital mortality

    Bilateral Dorsal Cochlear Nucleus Lesions Prevent Acoustic-Trauma Induced Tinnitus in an Animal Model

    Get PDF
    Animal experiments suggest that chronic tinnitus (“ringing in the ears”) may result from processes that overcompensate for lost afferent input. Abnormally elevated spontaneous neural activity has been found in the dorsal cochlear nucleus (DCN) of animals with psychophysical evidence of tinnitus. However, it has also been reported that DCN ablation fails to reduce established tinnitus. Since other auditory areas have been implicated in tinnitus, the role of the DCN is unresolved. The apparently conflicting electrophysiological and lesion data can be reconciled if the DCN serves as a necessary trigger zone rather than a chronic generator of tinnitus. The present experiment used lesion procedures identical to those that failed to decrease pre-existing tinnitus. The exception was that lesions were done prior to tinnitus induction. Young adult rats were trained and tested using a psychophysical procedure shown to detect tinnitus. Tinnitus was induced by a single unilateral high-level noise exposure. Consistent with the trigger hypothesis, bilateral dorsal DCN lesions made before high-level noise exposure prevented the development of tinnitus. A protective effect stemming from disruption of the afferent pathway could not explain the outcome because unilateral lesions ipsilateral to the noise exposure did not prevent tinnitus and unilateral lesions contralateral to the noise exposure actually exacerbated the tinnitus. The DCN trigger mechanism may involve plastic circuits that, through loss of inhibition, or upregulation of excitation, increase spontaneous neural output to rostral areas such as the inferior colliculus. The increased drive could produce persistent pathological changes in the rostral areas, such as high-frequency bursting and decreased interspike variance, that comprise the chronic tinnitus signal

    Pain in Multiple System Atrophy a Systematic Review and Meta-Analysis

    Get PDF
    Background: Individuals with multiple system atrophy (MSA) often complain about pain, nonetheless this remains a poorly investigated non-motor feature of MSA. Objectives: Here, we aimed at assessing the prevalence, characteristics, and risk factors for pain in individuals with MSA. Methods: Following the Preferred Reporting Items for Systematic Reviews and Meta-Analyzes (PRISMA) guidelines, we systematically screened the PubMED, Cochrane, and Web of Science databases for papers published in English until September 30, 2022, combining the following keywords: “pain,” “multiple system atrophy,” “MSA,” “olivopontocerebellar atrophy,” “OPCA,” “striatonigral degeneration,” “SND,” “Shy Drager,” and “atypical parkinsonism.”. Results: The search identified 700 records. Sixteen studies provided information on pain prevalence in cohorts of MSA individuals and were included in a qualitative assessment based on the Quality Assessment of Diagnostic Accuracy Studies (QUADAS) tool. Thirteen studies (11 cross-sectional, two longitudinal) scored ≥14 points on QUADAS assessment and were included in a quantitative analysis, pooling data from 1236 MSA individuals. The resulting pooled prevalence of pain in MSA was 67% (95% confidence intervals [CI] = 57%–75%), and significantly higher in individuals with MSA of parkinsonian rather than cerebellar type (76% [95% CI = 63%–87%] vs. 45% [95% CI = 33%–57%], P = 0.001). Pain assessment tools and collected information were highly heterogeneous across studies. Two studies reported pain treatment strategies and found that only every second person with MSA complaining about pain had received targeted treatment. Conclusions: We found that pain is a frequent, but still under-recognized and undertreated feature of MSA. Further research is needed to improve pain detection and treatment in MSA
    corecore