501 research outputs found

    Task-dependent Modulation of Cortical Excitability and Balance Control in Individuals with Post-concussion Syndrome

    Get PDF
    In most cases, symptoms resolve between 7-10 days post-concussion. However, in 10-15% of the concussed population, symptoms can remain unresolved for months to years following the head injury. The purpose of this thesis was two-fold, and was broken up into two studies, where the same individuals participated in both studies. The purpose of the first study was to quantify the differences in balance control between individuals with PCS (i.e., had been experiencing symptoms for \u3c30 days) and non-concussed individuals during a lower-limb reaching task. Participants completed a static balance assessment before and after a lower-limb reaching task, which incorporated a Go/No-Go paradigm. Results from this study revealed no differences in the static stability assessments, however, individuals with PCS demonstrated increased medial-lateral COP displacement as well as greater trunk pitch during the reaching task. Overall, the findings reveal persistent balance impairments in individuals with PCS, which may put this population at an increased risk of further injury. The purpose of the second study was to assess task-dependent modulation of cortical excitability prior to planned index finger abduction contractions comparing a non-concussed population to a population with PCS. The protocol in this study consisted of both single and paired-pulse transcranial magnetic stimulation (TMS) which was applied prior to the beginning of 3 different tasks (i.e., a rest condition with no plan to contract, a precision contraction, and a powerful contraction). In addition to the three tasks, participants also had to respond to a Go/No-Go cue. The results of this study revealed an increase in excitability prior to a precision contraction in both non-concussed and PCS groups. No differences in task-dependent modulation were found between the two groups with respect to intracortical facilitation and inhibition, however a negative correlation between number of symptoms reported (SCAT3 symptom evaluation) and intracortical facilitation was revealed. The increase in corticospinal excitability prior to a precision contraction was not explained by the two cortical mechanisms we assessed and may therefore be due to spinal modulation or a different cortical mechanism. Overall, based on the results from this thesis, it appears that individuals with PCS have balance impairments, which may be a result of an inability to maximally activate their postural muscles. Furthermore, it appears that those individuals who reported a higher number of symptoms had greater reductions in intracortical facilitation, likely reflecting the heterogeneity of this clinical group

    I Gave You Up Just Before You Threw Me Down

    Get PDF
    https://digitalcommons.library.umaine.edu/mmb-vp/1652/thumbnail.jp

    Oh! What A Pal Was Mary

    Get PDF
    https://digitalcommons.library.umaine.edu/mmb-vp/2282/thumbnail.jp

    Prevalence of Chlamydia abortus in Belgian ruminants

    Get PDF
    Chlamydia (C.) abortus enzootic abortion still remains the most common cause of reproductive failure in sheep-breeding countries all over the world. Chlamydia abortus in cattle is predominantly associated with genital tract disease and mastitis. In this study, Belgian sheep (n=958), goats (n=48) and cattle (n=1849) were examined, using the ID Screen (TM) Chlamydia abortus indirect multi-species antibody ELISA. In the sheep, the highest prevalence rate was found in Limburg (4.05%). The animals of Antwerp, Brabant and Liege tested negative. The prevalence in the remaining five regions was low (0.24% to 2.74%). Of the nine goat herds, only one herd in Luxembourg was seropositive. In cattle, the highest prevalence rate was found in Walloon Brabant (4.23%). The animals of Limburg and Namur tested negative. The prevalence rate in the remaining seven regions ranged between 0.39% and 4.02%

    TOPDB: topology data bank of transmembrane proteins

    Get PDF
    The Topology Data Bank of Transmembrane Proteins (TOPDB) is the most complete and comprehensive collection of transmembrane protein datasets containing experimentally derived topology information currently available. It contains information gathered from the literature and from public databases available on the internet for more than a thousand transmembrane proteins. TOPDB collects details of various experiments that were carried out to learn about the topology of particular transmembrane proteins. In addition to experimental data from the literature, an extensive collection of structural data was also compiled from PDB and from PDBTM. Because topology information is often incomplete, for each protein in the database the most probable topology that is consistent with the collected experimental constraints was also calculated using the HMMTOP transmembrane topology prediction algorithm. Each record in TOPDB also contains information on the given protein sequence, name, organism and cross references to various other databases. The web interface of TOPDB includes tools for searching, relational querying and data browsing as well as for visualization. TOPDB is designed to bridge the gap between the number of transmembrane proteins available in sequence databases and the publicly accessible topology information of experimentally or computationally studied transmembrane proteins. TOPDB is available at http://topdb.enzim.hu

    TOPDOM: database of domains and motifs with conservative location in transmembrane proteins

    Get PDF
    Summary: The TOPDOM database is a collection of domains and sequence motifs located consistently on the same side of the membrane in α-helical transmembrane proteins. The database was created by scanning well-annotated transmembrane protein sequences in the UniProt database by specific domain or motif detecting algorithms. The identified domains or motifs were added to the database if they were uniformly annotated on the same side of the membrane of the various proteins in the UniProt database. The information about the location of the collected domains and motifs can be incorporated into constrained topology prediction algorithms, like HMMTOP, increasing the prediction accuracy

    A veseátültetés első 50 éve Magyarországon

    Get PDF
    The first Hungarian kidney transplantation was performed by Andras Nemeth in Szeged in 1962, approximately 50 years ago. A preliminary agreement with Eurotransplant was signed in 2011, and special patient groups gained benefit from this cooperation in 2012, wnich lead to a full membership to Eurotransplant. This event inspired the authors to review the history of Hungarian kidney transplantation of the past 50 years, from the first operation to recent via the specific cornerstones of the transplant program. The donor of the first Hungarian kidney transplantation was the brother of the recipient. The operation itself was technically successful, but the lack of immunosuppression caused graft rejection, and the patient died after 79 days. His brother, the donor, is still healthy, after 50 years, and he encourages everybody to donate organs. Organized kidney transplant program started more than 10 years later, such as 1973, in Budapest. The program was supported by the Ministry of Health. New centers joined the program later, Szeged in 1979, Debrecen in 1991 and Pecs in 1993. These four transplant centers work currently in Hungary, and 6611 kidney transplantation has been performed up to the end of year 2012. Orv. Hetil., 2013, 154, 846-849

    Computers from plants we never made. Speculations

    Full text link
    We discuss possible designs and prototypes of computing systems that could be based on morphological development of roots, interaction of roots, and analog electrical computation with plants, and plant-derived electronic components. In morphological plant processors data are represented by initial configuration of roots and configurations of sources of attractants and repellents; results of computation are represented by topology of the roots' network. Computation is implemented by the roots following gradients of attractants and repellents, as well as interacting with each other. Problems solvable by plant roots, in principle, include shortest-path, minimum spanning tree, Voronoi diagram, α\alpha-shapes, convex subdivision of concave polygons. Electrical properties of plants can be modified by loading the plants with functional nanoparticles or coating parts of plants of conductive polymers. Thus, we are in position to make living variable resistors, capacitors, operational amplifiers, multipliers, potentiometers and fixed-function generators. The electrically modified plants can implement summation, integration with respect to time, inversion, multiplication, exponentiation, logarithm, division. Mathematical and engineering problems to be solved can be represented in plant root networks of resistive or reaction elements. Developments in plant-based computing architectures will trigger emergence of a unique community of biologists, electronic engineering and computer scientists working together to produce living electronic devices which future green computers will be made of.Comment: The chapter will be published in "Inspired by Nature. Computing inspired by physics, chemistry and biology. Essays presented to Julian Miller on the occasion of his 60th birthday", Editors: Susan Stepney and Andrew Adamatzky (Springer, 2017
    • …
    corecore