585 research outputs found

    The X-ray absorption spectrum of 4U1700-37 and its implications for the stellar wind of the companion HD153919

    Get PDF
    The first high resolution non-dispersive 2-60 KeV X-ray spectra of 4U1700-37 is presented. The continuum is typical of that found from X-ray pulsars; that is a flat power law between 2 and 10 keV and, beyond 10 keV, an exponential decay of characteristic energy varying between 10 and 20 keV. No X-ray pulsations were detected between 160 ms and 6 min with an amplitude greater than approximately 2%. The absorption measured at binary phases approximately 0.72 is comparable to that expected from the stellar wind of the primary. The gravitational capture of material in the wind is found to be more than enough to power the X-ray source. The increase in the average absorption after phi o approximately 0.5 is confirmed. The minimum level of adsorption is a factor of 2 or 3 lower than that reported by previous observers, which may be related to a factor of approximately 10 decline in the average X-ray luminosity over the same interval. Short term approximately 50% variations in adsorption are seen for the first time which appear to be loosely correlated with approximately 10 min flickering activity in the X-ray flux. These most likely originate from inhomogeneities in the stellar wind of the primary

    Modeling of Photoionized Plasmas

    Get PDF
    In this paper I review the motivation and current status of modeling of plasmas exposed to strong radiation fields, as it applies to the study of cosmic X-ray sources. This includes some of the astrophysical issues which can be addressed, the ingredients for the models, the current computational tools, the limitations imposed by currently available atomic data, and the validity of some of the standard assumptions. I will also discuss ideas for the future: challenges associated with future missions, opportunities presented by improved computers, and goals for atomic data collection.Comment: 17 pages, 8 figures, to appear in the proceedings of Xray2010, Utrecht, the Netherlands, March 15-17 201

    Radiative and Auger decay data for modelling nickel K lines

    Full text link
    Radiative and Auger decay data have been calculated for modelling the K lines in ions of the nickel isonuclear sequence, from Ni+^+ up to Ni27+^{27+}. Level energies, transition wavelengths, radiative transition probabilities, and radiative and Auger widths have been determined using Cowan's Hartree--Fock with Relativistic corrections (HFR) method. Auger widths for the third-row ions (Ni+^+--Ni10+^{10+}) have been computed using single-configuration average (SCA) compact formulae. Results are compared with data sets computed with the AUTOSTRUCTURE and MCDF atomic structure codes and with available experimental and theoretical values, mainly in highly ionized ions and in the solid state.Comment: submitted to ApJS. 42 pages. 12 figure

    Photoionization Modeling and the K Lines of Iron

    Full text link
    We calculate the efficiency of iron K line emission and iron K absorption in photoionized models using a new set of atomic data. These data are more comprehensive than those previously applied to the modeling of iron K lines from photoionized gases, and allow us to systematically examine the behavior of the properties of line emission and absorption as a function of the ionization parameter, density and column density of model constant density clouds. We show that, for example, the net fluorescence yield for the highly charged ions is sensitive to the level population distribution produced by photoionization, and these yields are generally smaller than those predicted assuming the population is according to statistical weight. We demonstrate that the effects of the many strongly damped resonances below the K ionization thresholds conspire to smear the edge, thereby potentially affecting the astrophysical interpretation of absorption features in the 7-9 keV energy band. We show that the centroid of the ensemble of Kα\alpha lines, the Kβ\beta energy, and the ratio of the Kα1\alpha_1 to Kα2\alpha_2 components are all diagnostics of the ionization parameter of our model slabsComment: 38 pages, submitted to Ap.J. Sup

    Testing Hydrodynamic Models of LMC X-4 with UV and X-ray Spectra

    Get PDF
    We compare the predictions of hydrodynamic models of the LMC X-4 X-ray binary system with observations of UV P Cygni lines with the GHRS and STIS spectrographs on the Hubble Space Telescope. The hydrodynamic model determines density and velocity fields of the stellar wind, wind-compressed disk, accretion stream, Keplerian accretion disk, and accretion disk wind. We use a Monte Carlo code to determine the UV P Cygni line profiles by simulating the radiative transfer of UV photons that originate on the star and are scattered in the wind. The qualitative orbital variation predicted is similar to that observed, although the model fails to reproduce the strong orbital asymmetry (the observed absorption is strongest for phi>0.5). The model predicts a mid-eclipse X-ray spectrum, due almost entirely to Compton scattering, with a factor 4 less flux than observed with ASCA. We discuss how the model may need to be altered to explain the spectral variability of the system.Comment: 11 figures, accepted by Ap

    Fe XXV and Fe XXVI Diagnostics of the Black Hole and Accretion Disk in Active Galaxies: Chandra Time-Resolved Spectroscopy of NGC 7314

    Full text link
    We report the detection of Fe XXV and Fe XXVI KαK\alpha emission lines from a Chandra HETGS observation of the Seyfert~1 galaxy NGC 7314, made simultaneously with RXTE. The lines are redshifted (cz ~ 1500 km/s) relative to the systemic velocity and unresolved. We argue that the lines originate in a near face-on (<7 degrees) disk having a radial line emissivity flatter than r^-2. Line emission from ionization states of Fe in the range ~Fe I up to Fe XXVI is observed. The ionization balance of Fe responds to continuum variations on timescales less than 12.5 ks, supporting an origin of the lines close to the X-ray source. We present additional, detailed diagnostics from this rich data set. These results identify NGC 7314 as a key source to study in the future if we are to pursue reverberation mapping of space-time near black-hole event horizons. This is because it is first necessary to understand the ionization structure of accretion disks and the relation between the X-ray continuum and Fe K line emission. However, we also describe how our results are suggestive of a means of measuring black-hole spin without a knowledge of the relation between the continuum and line emission. Finally, these data emphasize that one {\it can} study strong gravity with narrow (as opposed to very broad) disk lines. In fact narrow lines offer higher precision, given sufficient energy resolution.Comment: Accepted for publication in the Astrophysical Journal. 30 pages, six figures, five of them color. Abstract is abridge

    GEMS X-ray Polarimeter Performance Simulations

    Get PDF
    The Gravity and Extreme Magnetism Small explorer (GEMS) is an X-ray polarization telescope selected as a NASA small explorer satellite mission. The X-ray Polarimeter on GEMS uses a Time Projection Chamber gas proportional counter to measure the polarization of astrophysical X-rays in the 2-10 keV band by sensing the direction of the track of the primary photoelectron excited by the incident X-ray. We have simulated the expected sensitivity of the polarimeter to polarized X-rays. We use the simulation package Penelope to model the physics of the interaction of the initial photoelectron with the detector gas and to determine the distribution of charge deposited in the detector volume. We then model the charge diffusion in the detector,and produce simulated track images. Within the track reconstruction algorithm we apply cuts on the track shape and focus on the initial photoelectron direction in order to maximize the overall sensitivity of the instrument, using this technique we have predicted instrument modulation factors nu(sub 100) for 100% polarized X-rays ranging from 10% to over 60% across the 2-10 keV X-ray band. We also discuss the simulation program used to develop and model some of the algorithms used for triggering, and energy measurement of events in the polarimeter

    Ubiquitous equatorial accretion disc winds in black hole soft states

    Full text link
    High resolution spectra of Galactic Black Holes (GBH) reveal the presence of highly ionised absorbers. In one GBH, accreting close to the Eddington limit for more than a decade, a powerful accretion disc wind is observed to be present in softer X-ray states and it has been suggested that it can carry away enough mass and energy to quench the radio jet. Here we report that these winds, which may have mass outflow rates of the order of the inner accretion rate or higher, are an ubiquitous component of the jet-free soft states of all GBH. We furthermore demonstrate that these winds have an equatorial geometry with opening angles of few tens of degrees, and so are only observed in sources in which the disc is inclined at a large angle to the line of sight. The decrease in Fe XXV / Fe XXVI line ratio with Compton temperature, observed in the soft state, suggests a link between higher wind ionisation and harder spectral shapes. Although the physical interaction between the wind, accretion flow and jet is still not fully understood, the mass flux and power of these winds, and their presence ubiquitously during the soft X-ray states suggests they are fundamental components of the accretion phenomenon.Comment: Accepted for publication in MNRAS Letter

    Astrophysical Fluids of Novae: High Resolution Pre-decay X-ray spectrum of V4743 Sagittarii

    Full text link
    Eight X-ray observations of V4743 Sgr (2002), observed with Chandra and XMM-Newton are presented. The nova turned off some time between days 301.9 and 371, and the X-ray flux subsequently decreased from day 301.9 to 526 following an exponential decline time scale of (96±3)(96 \pm 3) days. We use the absorption lines present in the SSS spectrum for diagnostic purposes, and characterize the physics and the dynamics of the expanding atmosphere during the explosion of the nova. The information extracted from this first stage is then used as input for computing full photoionization models of the ejecta in V4743 Sgr. The SSS spectrum is modeled with a simple black-body and multiplicative Gaussian lines, which provides us of a general kinematical picture of the system, before it decays to its faint phase (Ness et al. 2003). In the grating spectra taken between days 180.4 and 370, we can resolve the line profiles of absorption lines arising from H-like and He-like C, N, and O, including transitions involving higher principal quantum numbers. Except for a few interstellar lines, all lines are significantly blue-shifted, yielding velocities between 1000 and 6000 km/s which implies an ongoing mass loss. It is shown that significant expansion and mass loss occur during this phase of the explosion, at a rate M˙(35)×104 (LL38) M/yr\dot{M} \approx (3-5) \times 10^{-4} ~ (\frac{L}{L_{38}}) ~ M_{\odot}/yr. Our measurements show that the efficiency of the amount of energy used for the motion of the ejecta, defined as the ratio between the kinetic luminosity LkinL_{\rm kin} and the radiated luminosity LradL_{\rm rad}, is of the order of one.Comment: 25 pages, 9 figures. Accepted in book: Recent Advances in Fluid Dynamics with Environmental Applications, pp.365-39
    corecore