9 research outputs found

    Diversity Patterns of Different Life Forms of Plants along an Elevational Gradient in Crete, Greece

    No full text
    Elevational gradients provide a unique opportunity to explore species responses to changing environmental conditions. Here, we focus on an elevational gradient in Crete, a climate-vulnerable Mediterranean plant biodiversity hotspot and explore the diversity patterns and underlying mechanisms of different plant life forms. We found that the significant differences in life forms’ elevational and environmental ranges are reflected in α- diversity (species richness at local scale), γ-diversity (species richness at regional scale) and β-diversity (variation in species composition). The α- and γ-diversity decreased with elevation, while β-diversity followed a hump-shaped relationship, with the peak varying between life forms. However, β-deviation (deviation from null expectations) varied significantly with elevation but was life formindependent. This suggests that species composition is shaped by the size of the available species pool which depends on life form, but also by other deterministic or stochastic processes that act in a similar way for different life forms. The strength of these processes varies with elevation, with hotter–drier conditions and increased human activities filtering species composition at lowlands and large-scale processes determining the species pool size overriding local ecological processes at higher elevations

    Complete genome sequence of Mycobacterium sp. strain (Spyr1) and reclassification to Mycobacterium gilvum Spyr1

    No full text
    Abstract Mycobacterium sp.Spyr1 is a newly isolated strain that occurs in a creosote contaminated site in Greece. It was isolated by an enrichment method using pyrene as sole carbon and energy source and is capable of degrading a wide range of PAH substrates including pyrene, fluoranthene, fluorene, anthracene and acenapthene. Here we describe the genomic features of this organism, together with the complete sequence and annotation. The genome consists of a 5,547,747 bp chromosome and two plasmids, a larger and a smaller one with sizes of 211,864 and 23,681 bp, respectively. In total, 5,588 genes were predicted and annotated

    Complete genome sequence of Arthrobacter phenanthrenivorans type strain (Sphe3)

    No full text
    Arthrobacter phenanthrenivorans is the type species of the genus, and is able to metabolize phenanthrene as a sole source of carbon and energy. A. phenanthrenivorans is an aerobic, non-motile, and Gram-positive bacterium, exhibiting a rod-coccus growth cycle which was originally isolated from a creosote polluted site in Epirus, Greece. Here we describe the features of this organism, together with the complete genome sequence, and annotation

    Co-designed Innovation and System for Resilient Exascale Computing in Europe: From Applications to Silicon (EuroEXA)

    No full text
    EuroEXA targets to provide the template for an upcoming exascale system by co-designing and implementing a petascale-level prototype with ground-breaking characteristics. To accomplish this, the project takes a holistic approach innovating both across the technology and the application/system software pillars. EuroEXA proposes a balanced architecture for compute and data-intensive applications, that builds on top of cost-efficient, modular-integration enabled by novel inter-die links, utilises a novel processing unit and embraces FPGA acceleration for computational, networking and storage operations. EuroEXA hardware designers work together with system software experts optimising the entire stack from language runtimes to low-level kernel drivers, and application developers that bring in a rich mix of key HPC applications from across climate/weather, physical/energy and life-science/bioinformatics domains to enable efficient system co-design and maximise the impact of the project
    corecore