380 research outputs found

    Decision support for adopting SPLE with transit-PL

    Get PDF
    It is generally acknowledged that the decision to adopt a software product line engineering (SPLE) approach needs to be performed carefully due to the di• erent risks involved in taking such an important decision. To mitigate the potential risks of the transition to SPLE, several studies have been proposed that include many di• erent rules for analyzing the feasibility of the SPLE adoption and the selection of transition process. However, it is not easy to apply these manually and likewise provide a proper decision with the corresponding justification. In this paper, we propose the tool Transit-PL, a web based decision support system for analyzing the feasibility of SPLE for an organization and selecting the appropriate transition strategy. Transit-PL provides a framework to build particular decision support system for selected strategies using di• erent types of questions and corresponding rules and set of answers. Copyright 2013 ACM

    Computed tomography-osteoabsorptiometry for assessing the density distribution of subchondral bone as a measure of long-term mechanical adaptation in individual joints

    Get PDF
    To estimate subchondral mineralisation patterns which represent the long-term loading history of individual joints, a method has been developed employing computed tomography (CT) which permits repeated examination of living joints. The method was tested on 5 knee, 3 sacroiliac, 3 ankle and 5 shoulder joints and then investigated with X-ray densitometry. A CT absorptiometric presentation and maps of the area distribution of the subchondral bone density areas were derived using an image analyser. Comparison of the results from both X-ray densitometry and CT-absorptiometry revealed almost identical pictures of distribution of the subchondral bone density. The method may be used to examine subchondral mineralisation as a measure of the mechanical adaptability of joints in the living subject

    Magnification, dust and time-delay constraints from the first resolved strongly lensed Type Ia supernova

    Get PDF
    We report lensing magnifications, extinction, and time-delay estimates for the first resolved, multiply-imaged Type Ia supernova iPTF16geu, at z = 0.409, using Hubble Space Telescope (HST) observations in combination with supporting ground-based data. Multi-band photometry of the resolved images provides unique information about the differential dimming due to dust in the lensing galaxy. Using HST and Keck AO reference images taken after the SN faded, we obtain a total lensing magnification for iPTF16geu of μ = 67.8^(+2.6)_(−2.9), accounting for extinction in the host and lensing galaxy. As expected from the symmetry of the system, we measure very short time-delays for the three fainter images with respect to the brightest one: -0.23 ± 0.99, -1.43 ± 0.74 and 1.36 ± 1.07 days. Interestingly, we find large differences between the magnifications of the four supernova images, even after accounting for uncertainties in the extinction corrections: Δm_1 = −3.88^(+0.07)_(−0.06), Δm_2 = −2.99^(+0.09)_(−0.08), Δm_3 = −2.19^(+0.14)_(−0.15) and Δm_4 = −2.40^(+0.14)_(−0.12) mag, discrepant with model predictions suggesting similar image brightnesses. A possible explanation for the large differences is gravitational lensing by substructures, micro- or millilensing, in addition to the large scale lens causing the image separations. We find that the inferred magnification is insensitive to the assumptions about the dust properties in the host and lens galaxy

    Magnification, dust and time-delay constraints from the first resolved strongly lensed Type Ia supernova iPTF16geu

    Get PDF
    We report lensing magnifications, extinction, and time-delay estimates for the first resolved, multiply imaged Type Ia supernova iPTF16geu, at z = 0.409, using Hubble Space Telescope (HST) observations in combination with supporting ground-based data. Multiband photometry of the resolved images provides unique information about the differential dimming due to dust in the lensing galaxy. Using HST and Keck AO reference images taken after the SN faded, we obtain a total lensing magnification for iPTF16geu of μ = 67.8^(+2.6)_(−2.9)⁠, accounting for extinction in the host and lensing galaxy. As expected from the symmetry of the system, we measure very short time-delays for the three fainter images with respect to the brightest one: −0.23 ± 0.99, −1.43 ± 0.74, and 1.36 ± 1.07 d. Interestingly, we find large differences between the magnifications of the four supernova images, even after accounting for uncertainties in the extinction corrections: Δm₁ = −3.88^(+0.07)_(−0.06), Δm₂ = −2.99^(+0.09)_(−0.08)⁠, Δm₃ = −2.19^(+0.14)_(−0.15)⁠, and Δm₄ = −2.40^(+0.14)_(−0.12) mag, discrepant with model predictions suggesting similar image brightnesses. A possible explanation for the large differences is gravitational lensing by substructures, micro- or millilensing, in addition to the large-scale lens causing the image separations. We find that the inferred magnification is insensitive to the assumptions about the dust properties in the host and lens galaxy

    Estimating the Absorbed Dose to Critical Organs During Dual X-ray Absorptiometry

    Get PDF
    Objective: The purpose of this study is to estimate a patient's organ dose (effective dose) during performance of dual X-ray absorptiometry by using the correlations derived from the surface dose and the depth doses in an anthropomorphic phantom. Materials and Methods: An anthropomorphic phantom was designed and TLDs (Thermoluminescent Dosimeters) were placed at the surface and these were also inserted at different depths of the thyroid and uterus of the anthropomorphic phantom. The absorbed doses were measured on the phantom for the spine and femur scan modes. The correlation coefficients and regression functions between the absorbed surface dose and the depth dose were determined. The derived correlation was then applied for 40 women patients to estimate the depth doses to the thyroid and uterus. Results: There was a correlation between the surface dose and depth dose of the thyroid and uterus in both scan modes. For the women's dosimetry, the average surface doses of the thyroid and uterus were 1.88 μGy and 1.81 μGy, respectively. Also, the scan center dose in the women was 5.70 μGy. There was correlation between the thyroid and uterus surface doses, and the scan center dose. Conclusion: We concluded that the effective dose to the patient's critical organs during dual X-ray absorptiometry can be estimated by the correlation derived from phantom dosimetry
    corecore