148 research outputs found

    Estimation of loan portfolio risk on the basis of Markov chain model

    Full text link
    A change of shares of credits portfolio is described by Markov chain with discrete time. A credit state is determined on as an accessory to some group of credits depending on presence of indebtedness and its terms. We use a model with discrete time and fix the system state through identical time intervals - once a month. It is obvious that the matrix of transitive probabilities is known incompletely. Various approaches to the matrix estimation are studied and methods of forecast the portfolio risk are proposed. The portfolio risk is set as a share of problematic loans. We propose a method to calculate necessary reserves on the base of the considered model. © 2013 IFIP International Federation for Information Processing.German Sci. Found. (DFG) Eur. Sci. Found. (ESF);Natl. Inst. Res. Comput. Sci. Control France (INRIA);DFG Research Center MATHEON;Weierstrass Institute for Applied Analysis and Stochastics (WIAS);European Patent Offic

    Monopolium production from photon fusion at the Large Hadron Collider

    Get PDF
    Magnetic monopoles have attracted the attention of physicists since the founding of the electromagnetic theory. Their search has been a constant endeavor which was intensified when Dirac established the relation between the existence of monopoles and charge quantization. However, these searches have been unsuccessful. We have recently proposed that monopolium, a monopole-antimonopole bound state, so strongly bound that it has a relatively small mass, could be easier to find and become an indirect but clear signature for the existence of magnetic monopoles. In here we extend our previous analysis for its production to two photon fusion at LHC energies

    Production and Decay of D_1(2420)^0 and D_2^*(2460)^0

    Get PDF
    We have investigated D+πD^{+}\pi^{-} and D+πD^{*+}\pi^{-} final states and observed the two established L=1L=1 charmed mesons, the D1(2420)0D_1(2420)^0 with mass 242122+1+22421^{+1+2}_{-2-2} MeV/c2^{2} and width 2053+6+320^{+6+3}_{-5-3} MeV/c2^{2} and the D2(2460)0D_2^*(2460)^0 with mass 2465±3±32465 \pm 3 \pm 3 MeV/c2^{2} and width 2876+8+628^{+8+6}_{-7-6} MeV/c2^{2}. Properties of these final states, including their decay angular distributions and spin-parity assignments, have been studied. We identify these two mesons as the jlight=3/2j_{light}=3/2 doublet predicted by HQET. We also obtain constraints on {\footnotesize ΓS/(ΓS+ΓD)\Gamma_S/(\Gamma_S + \Gamma_D)} as a function of the cosine of the relative phase of the two amplitudes in the D1(2420)0D_1(2420)^0 decay.Comment: 15 pages in REVTEX format. hardcopies with figures can be obtained by sending mail to: [email protected]

    A measurement of B(D+S → φl+ν) B(D+S → φπ+)

    Get PDF
    Using the CLEO II detector at CESR, we have measured the ratio of branching fractions B (D + S → φl + ν) B (D + S → φπ + ) = 0.54 ± 0.05 ± 0.04 . We use this measurement to obtain a model dependent estimate of B (D + S → φπ + )

    The estimating function bootstrap

    No full text
    Canadian Journal of Statistics283449-49

    Aspects of analysis of multivariate failure time data

    No full text
    Multivariate failure time data arise in various forms including recurrent event data when individuals are followed to observe the sequence of occurrences of a certain type of event; correlated failure time when an individual is followed for the occurrence of two or more types of events for which the individual is simultaneously at risk, or when distinct individuals have depending event times; or more complicated multistate processes where individuals may move among a number of discrete states over the course of a follow-up study and the states and associated sojourn times are recorded. Here we provide a critical review of statistical models and data analysis methods for the analysis of recurrent event data and correlated failure time data. This review suggests a valuable role for partially marginalized intensity models for the analysis of recurrent event data, and points to the usefulness of marginal hazard rate models and nonparametric estimates of pairwise dependencies for the analysis of correlated failure times. Areas in need of further methodology development are indicate
    corecore