90 research outputs found

    Systemic immune response induced by oxaliplatin-based neoadjuvant therapy favours survival without metastatic progression in high-risk rectal cancer

    Get PDF
    Background Systemic failure remains a challenge in rectal cancer. We investigated the possible systemic anti-tumour immune activity invoked within oxaliplatin-based neoadjuvant therapy. Methods In two high-risk patient cohorts, we assessed the circulating levels of the fms-like tyrosine kinase 3 ligand (Flt3L), a factor reflecting both therapy-induced myelosuppression and activation of tumour antigen-presenting dendritic cells, at baseline and following induction chemotherapy and sequential chemoradiotherapy, both modalities containing oxaliplatin. The primary end point was progression-free survival (PFS). Results In both cohorts, the median Flt3L level was significantly higher at completion of each sequential modality than at baseline. The 5-year PFS (most events being metastatic progression) was 68% and 71% in the two cohorts consisting of 33% and 52% T4 cases. In the principal cohort, a high Flt3L level following the induction chemotherapy was associated with low risk for a PFS event (HR: 0.15; P < 0.01). These patients also had available dose scheduling and toxicity data, revealing that oxaliplatin dose reduction during chemoradiotherapy, undertaken to maintain compliance to the radiotherapy protocol, was associated with advantageous PFS (HR: 0.47; P = 0.046). Conclusion In high-risk rectal cancer, oxaliplatin-containing neoadjuvant therapy may promote an immune response that favours survival without metastatic progression

    Probing a Complex of Cytochromecand Cardiolipin by Magnetic Circular Dichroism Spectroscopy: Implications for the Initial Events in Apoptosis

    Get PDF
    Oxidation of cardiolipin (CL) by its complex with cytochrome c (cyt c) plays a crucial role in triggering apoptosis. Through a combination of magnetic circular dichroism spectroscopy and potentiometric titrations, we show that both the ferric and ferrous forms of the heme group of a CL:cyt c complex exist as multiple conformers at a physiologically relevant pH of 7.4. For the ferric state, these conformers are His/Lys- and His/OH–-ligated. The ferrous state is predominantly high-spin and, most likely, His/–. Interconversion of the ferric and ferrous conformers is described by a single midpoint potential of -80 ± 9 mV vs SHE. These results suggest that CL oxidation in mitochondria could occur by the reaction of molecular oxygen with the ferrous CL:cyt c complex in addition to the well-described reaction of peroxides with the ferric form

    Elucidating the mechanism of ferrocytochrome c heme disruption by peroxidized cardiolipin

    Get PDF
    The interaction of peroxidized cardiolipin with ferrocytochrome c induces two kinetically and chemically distinct processes. The first is a rapid oxidation of ferrocytochrome c, followed by a slower, irreversible disruption of heme c. The oxidation of ferrocytochrome c by peroxidized cardiolipin is explained by a Fenton-type reaction. Heme scission is a consequence of the radical-mediated reactions initiated by the interaction of ferric heme iron with peroxidized cardiolipin. Simultaneously with the heme c disruption, generation of hydroxyl radical is detected by EPR spectroscopy using the spin trapping technique. The resulting apocytochrome c sediments as a heterogeneous mixture of high aggregates, as judged by sedimentation analysis. Both the oxidative process and the destructive process were suppressed by nonionic detergents and/or high ionic strength. The mechanism for generating radicals and heme rupture is presented

    Silencing, Positive Selection and Parallel Evolution: Busy History of Primate Cytochromes c

    Get PDF
    Cytochrome c (cyt c) participates in two crucial cellular processes, energy production and apoptosis, and unsurprisingly is a highly conserved protein. However, previous studies have reported for the primate lineage (i) loss of the paralogous testis isoform, (ii) an acceleration and then a deceleration of the amino acid replacement rate of the cyt c somatic isoform, and (iii) atypical biochemical behavior of human cyt c. To gain insight into the cause of these major evolutionary events, we have retraced the history of cyt c loci among primates. For testis cyt c, all primate sequences examined carry the same nonsense mutation, which suggests that silencing occurred before the primates diversified. For somatic cyt c, maximum parsimony, maximum likelihood, and Bayesian phylogenetic analyses yielded the same tree topology. The evolutionary analyses show that a fast accumulation of non-synonymous mutations (suggesting positive selection) occurred specifically on the anthropoid lineage root and then continued in parallel on the early catarrhini and platyrrhini stems. Analysis of evolutionary changes using the 3D structure suggests they are focused on the respiratory chain rather than on apoptosis or other cyt c functions. In agreement with previous biochemical studies, our results suggest that silencing of the cyt c testis isoform could be linked with the decrease of primate reproduction rate. Finally, the evolution of cyt c in the two sister anthropoid groups leads us to propose that somatic cyt c evolution may be related both to COX evolution and to the convergent brain and body mass enlargement in these two anthropoid clades

    The Ionizing Radiation-Induced Bystander Effect: Evidence, Mechanism, and Significance

    Get PDF
    It has long been considered that the important biological effects of ionizing radiation are a direct consequence of unrepaired or misrepaired DNA damage occurring in the irradiated cells. It was presumed that no effect would occur in cells in the population that receive no direct radiation exposure. However, in vitro evidence generated over the past two decades has indicated that non-targeted cells in irradiated cell cultures also experience significant biochemical and phenotypic changes that are often similar to those observed in the targeted cells. Further, nontargeted tissues in partial body-irradiated rodents also experienced stressful effects, including oxidative and oncogenic effects. This phenomenon, termed the “bystander response,” has been postulated to impact both the estimation of health risks of exposure to low doses/low fluences of ionizing radiation and the induction of second primary cancers following radiotherapy. Several mechanisms involving secreted soluble factors, oxidative metabolism, gap-junction intercellular communication, and DNA repair, have been proposed to regulate radiation-induced bystander effects. The latter mechanisms are major mediators of the system responses to ionizing radiation exposure, and our knowledge of the biochemical and molecular events involved in these processes is reviewed in this chapter

    Immune-modulating effects of conventional therapies in colorectal cancer

    No full text
    Biological heterogeneity and low inherent immunogenicity are two features that greatly impact therapeutic management and outcome in colorectal cancer. Despite high local control rates, systemic tumor dissemination remains the main cause of treatment failure and stresses the need for new developments in combined-modality approaches. While the role of adaptive immune responses in a small subgroup of colorectal tumors with inherent immunogenicity is indisputable, the challenge remains in identifying the optimal synergy between conventional treatment modalities and immune therapy for the majority of the less immunogenic cases. In this context, cytotoxic agents such as radiation and certain chemotherapeutics can be utilized to enhance the immunogenicity of an otherwise immunologically silent disease and enable responsiveness to immune therapy. In this review, we explore the immunological characteristics of colorectal cancer, the effects that standard-of-care treatments have on the immune system, and the opportunities arising from combining immune checkpoint-blocking therapy with immune-modulating conventional treatments

    Confidence interval methods for antimicrobial resistance surveillance data

    No full text
    Abstract Background Antimicrobial resistance (AMR) is one of the greatest global health challenges today, but burden assessment is hindered by uncertainty of AMR prevalence estimates. Geographical representation of AMR estimates typically pools data collected from several laboratories; however, these aggregations may introduce bias by not accounting for the heterogeneity of the population that each laboratory represents. Methods We used AMR data from up to 381 laboratories in the United States from The Surveillance Network to evaluate methods for estimating uncertainty of AMR prevalence estimates. We constructed confidence intervals for the proportion of resistant isolates using (1) methods that account for the clustered structure of the data, and (2) standard methods that assume data independence. Using samples of the full dataset with increasing facility coverage levels, we examined how likely the estimated confidence intervals were to include the population mean. Results Methods constructing 95% confidence intervals while accounting for possible within-cluster correlations (Survey and standard methods adjusted to employ cluster-robust errors), were more likely to include the sample mean than standard methods (Logit, Wilson score and Jeffreys interval) operating under the assumption of independence. While increased geographical coverage improved the probability of encompassing the mean for all methods, large samples still did not compensate for the bias introduced from the violation of the data independence assumption. Conclusion General methods for estimating the confidence intervals of AMR rates that assume data are independent, are likely to produce biased results. When feasible, the clustered structure of the data and any possible intra-cluster variation should be accounted for when calculating confidence intervals around AMR estimates, in order to better capture the uncertainty of prevalence estimates

    Biomarkers of histone deacetylase inhibitor activity in a phase 1 combined-modality study with radiotherapy

    Get PDF
    Background Following the demonstration that histone deacetylase inhibitors enhanced experimental radiation-induced clonogenic suppression, the Pelvic Radiation and Vorinostat (PRAVO) phase 1 study, combining fractionated radiotherapy with daily vorinostat for pelvic carcinoma, was designed to evaluate both clinical and novel biomarker endpoints, the latter relating to pharmacodynamic indicators of vorinostat action in clinical radiotherapy. Patients and Methods Potential biomarkers of vorinostat radiosensitizing action, not simultaneously manifesting molecular perturbations elicited by the radiation itself, were explored by gene expression array analysis of study patients' peripheral blood mononuclear cells (PBMC), sampled at baseline (T0) and on-treatment two and 24 hours (T2 and T24) after the patients had received vorinostat. Results This strategy revealed 1,600 array probes that were common for the comparisons T2 versus T0 and T24 versus T2 across all of the patients, and furthermore, that no significantly differential expression was observed between the T0 and T24 groups. Functional annotation analysis of the array data showed that a significant number of identified genes were implicated in gene regulation, the cell cycle, and chromatin biology. Gene expression was validated both in patients' PBMC and in vorinostat-treated human carcinoma xenograft models, and transient repression of MYC was consistently observed. Conclusion Within the design of the PRAVO study, all of the identified genes showed rapid and transient induction or repression and therefore, in principle, fulfilled the requirement of being pharmacodynamic biomarkers of vorinostat action in fractionated radiotherapy, possibly underscoring the role of MYC in this therapeutic setting

    Biomarkers of Treatment Toxicity in Combined-Modality Cancer Therapies with Radiation and Systemic Drugs: Study Design, Multiplex Methods, Molecular Networks

    No full text
    Organ toxicity in cancer therapy is likely caused by an underlying disposition for given pathophysiological mechanisms in the individual patient. Mechanistic data on treatment toxicity at the patient level are scarce; hence, probabilistic and translational linkages among different layers of data information, all the way from cellular targets of the therapeutic exposure to tissues and ultimately the patient’s organ systems, are required. Throughout all of these layers, untoward treatment effects may be viewed as perturbations that propagate within a hierarchically structured network from one functional level to the next, at each level causing disturbances that reach a critical threshold, which ultimately are manifested as clinical adverse reactions. Advances in bioinformatics permit compilation of information across the various levels of data organization, presumably enabling integrated systems biology-based prediction of treatment safety. In view of the complexity of biological responses to cancer therapy, this communication reports on a “top-down” strategy, starting with the systematic assessment of adverse effects within a defined therapeutic context and proceeding to transcriptomic and proteomic analysis of relevant patient tissue samples and computational exploration of the resulting data, with the ultimate aim of utilizing information from functional connectivity networks in evaluation of patient safety in multimodal cancer therapy
    corecore