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Abstract

Background: Following the demonstration that histone deacetylase inhibitors enhanced experimental radiation-induced
clonogenic suppression, the Pelvic Radiation and Vorinostat (PRAVO) phase 1 study, combining fractionated radiotherapy
with daily vorinostat for pelvic carcinoma, was designed to evaluate both clinical and novel biomarker endpoints, the latter
relating to pharmacodynamic indicators of vorinostat action in clinical radiotherapy.

Patients and Methods: Potential biomarkers of vorinostat radiosensitizing action, not simultaneously manifesting molecular
perturbations elicited by the radiation itself, were explored by gene expression array analysis of study patients’ peripheral
blood mononuclear cells (PBMC), sampled at baseline (T0) and on-treatment two and 24 hours (T2 and T24) after the
patients had received vorinostat.

Results: This strategy revealed 1,600 array probes that were common for the comparisons T2 versus T0 and T24 versus T2
across all of the patients, and furthermore, that no significantly differential expression was observed between the T0 and
T24 groups. Functional annotation analysis of the array data showed that a significant number of identified genes were
implicated in gene regulation, the cell cycle, and chromatin biology. Gene expression was validated both in patients’ PBMC
and in vorinostat-treated human carcinoma xenograft models, and transient repression of MYC was consistently observed.

Conclusion: Within the design of the PRAVO study, all of the identified genes showed rapid and transient induction or
repression and therefore, in principle, fulfilled the requirement of being pharmacodynamic biomarkers of vorinostat action
in fractionated radiotherapy, possibly underscoring the role of MYC in this therapeutic setting.
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Introduction

Modern radiation oncology will require a synergy between high-

precision radiotherapy protocols and innovative approaches for

biological optimization of radiation effect. From a clinical

perspective, new insights into molecular radiobiology will provide

a unique opportunity for combining systemic targeted therapeutics

with radiotherapy [1]. One example is the use of histone

deacetylase (HDAC) inhibitors as potentially radiosensitizing

drugs. Inhibition of HDAC enzymes leads to acetylation of

histone and non-histone proteins, and the resultant changes in

gene transcription cause alterations in key molecules that

orchestrate a wide range of cellular functions, including cell cycle

progression, DNA damage signaling and repair, and cell death by

apoptosis and autophagy [2–5].

Following the demonstration that HDAC inhibitors enhanced

radiation-induced clonogenic suppression of experimental in vitro

and in vivo colorectal carcinoma models [6–9], but independently

of the actual histone acetylation level at the time of radiation

exposure [7,8], we conducted the Pelvic Radiation and Vorinostat

(PRAVO) phase 1 study [10,11]. This trial, undertaken in

sequential patient cohorts exposed to escalating dose levels of

the HDAC inhibitor vorinostat combined with pelvic palliative

radiotherapy for advanced gastrointestinal malignancy, was the

first to report on the therapeutic use of an HDAC inhibitor in

clinical radiotherapy. It was designed to demonstrate a number of

key questions; whether the investigational agent reached the

specific target (detection of tumor histone acetylation), the

applicability of non-invasive tumor response assessment (using
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functional imaging), and importantly, that the combination of an

HDAC inhibitor and radiation was safe and tolerable.

The ultimate goal of a first-in-human therapy trial is to conclude

with a recommended treatment dose for follow-up expanded trials,

and in achieving this, a phase 1 study typically is designed to

determine treatment toxicity and tolerability (in terms of dose-

limiting toxicity and maximum-tolerated dose (MTD), respective-

ly) [12,13]. For molecularly targeted agents, the dose that results in

a relevant level of target modulation may differ greatly from the

MTD, and generally, we do not have a good understanding of the

relationship between the MTD and the dose required to achieve

the desired therapeutic effect [1]. An optimum biological dose may

be the dose that is associated with pharmacodynamic biomarkers

reflecting the mechanism of drug action. In the setting of

fractionated radiotherapy, this would ideally represent a radio-

sensitizing molecular event occurring at each radiation fraction, or

in other words, a biological indicator with a transient and periodic

expression profile. Importantly, tumor specimens for this partic-

ular purpose cannot be sampled after the patient has commenced

the radiation treatment. Any signaling activity in on-treatment

tumor samples would reflect the combined effect of radiation and

the systemic drug, and the contribution of the latter would

probably be indistinguishable from the effect of the actual

accumulated radiation dose. Instead, the study can be designed

to collect non-irradiated surrogate tissue both before the

commencement of study treatment and on-treatment at time

points reflecting the timing of administration of the systemic drug

with regard to the fractionated radiotherapy protocol. In addition,

as a general rule, biomarkers that have been previously established

for single-agent therapy will require reevaluation in a first-in-

human clinical trial combining a molecularly targeted compound

with radiotherapy.

Within this context, i.e., that the possible mechanism of

radiosensitizing action of the molecularly targeted agent should

be regarded a main objective in a combined-modality study with

radiotherapy, the present study reports on a correlative analytical

strategy for identifying possible biomarkers of HDAC inhibitor

activity, using peripheral blood mononuclear cells (PBMC) from

the PRAVO phase 1 study patients receiving pelvic palliative

radiotherapy as an easily accessible surrogate tissue for vorinostat

exposure [14]. Gene expression array analysis identified PBMC

genes that from experimental models are known to be implicated

in biological processes governed by HDAC inhibitors, and might

be further developed as pharmacodynamic biomarkers of vorino-

stat activity in the setting of fractionated radiotherapy.

Materials and Methods

Ethics Statement
Both of the protocols for the PRAVO study (ClinicalTrials ID

NCT00455351) and the phase 2, non-randomized study for

patients with locally advanced rectal cancer (LARC) given

neoadjuvant chemoradiotherapy (ClinicalTrials ID

NCT00278694) were approved by the Institutional Review Board

and the Regional Committee for Medical and Health Research

Ethics South-East Norway (REC South-East, Permit Number S-

06289 and S-05059, respectively), and were performed in

accordance with the Declaration of Helsinki. Written informed

consent was required for participation. Housing and all procedures

involving animals were performed according to protocols

approved by the Animal Care and Use Committee at Department

of Comparative Medicine, Oslo University Hospital (Permit

Number 885–2616–2919–2928–3688), in compliance with the

Norwegian National Committee for Animal Experiments’ guide-

lines on animal welfare.

PRAVO Study Patients and Objectives
The patient population was enrolled between February 2007

and May 2009. The principal eligibility criterion was histologically

confirmed pelvic carcinoma scheduled to receive palliative

radiation to 30 Gy in 3-Gy daily fractions. Other details on

eligibility are given in the initial report [10]. This phase 1 dose-

escalation study adopted a standard 3+3 expansion cohort design

[12], where patients with advanced gastrointestinal carcinoma

were enrolled onto four sequential dose levels of vorinostat (Merck

& Co., Inc., Whitehouse Station, NJ, USA), starting at 100 mg

daily with dose escalation in increments of 100 mg [10]. The

primary objective was to determine tolerability of vorinostat,

defined by dose-limiting toxicity and MTD, when administered

concomitantly with palliative radiation to pelvic target volumes.

Secondary objectives were to assess the biological activity of

vorinostat, including the identification of possible biomarkers of

HDAC inhibitor activity, and to monitor radiological response

when given with pelvic radiotherapy. The study data on patient

treatment tolerability, tumor histone acetylation following vorino-

stat administration, and treatment-induced changes in tumor

volume and apparent distribution coefficient, as assessed by

magnetic resonance imaging, have been reported in detail

previously [10,11].

Patient Blood Sampling and RNA Isolation
As depicted by Figure 1, peripheral blood, drawn on PAXgene

Blood RNA Tubes (Qiagen Norge, Oslo, Norway), was collected

at baseline (before commencement of study treatment; termed T0)

and on-treatment the third treatment day, two and 24 hours after

the patient had received the preceding daily dose of vorinostat

(termed T2 and T24), respectively. A full set of three samples (T0,

T2, and T24) was obtained from 14 of the 16 evaluable study

patients (Table 1). The tubes were stored at 270uC until analysis.

Total PBMC RNA was isolated using PAXgene Blood RNA Kit

(Qiagen), following the manufacturer’s protocol. RNA concentra-

tion and quality were assessed using NanoDrop 1000 and Agilent

2100 Bioanalyzer (Thermo Fisher Scientific Norway, Oslo,

Norway), respectively.

Gene Expression Array Analysis
This analysis was performed by the Norwegian Genomics

Consortium (Oslo, Norway). Briefly, cRNA synthesis, amplifica-

tion, and hybridization to Illumina Human WG-6 v3 Expression

BeadChip arrays (Illumina, Inc., San Diego, CA, USA), contain-

ing 48,000 probes, were carried out as per manufacturer’s

instructions. Signal intensities were extracted by the BeadArray

Reader Software (Illumina), and raw data were imported into the

GenomeStudio v2010.1 Software, Gene Expression module v1.6.0

(Illumina). The primary array data are available in the Gene

Expression Omnibus data repository (GEO accession number

GSE46703).

Statistical and Functional Annotation Analyses of Array
Data

Analysis was performed using Bioconductor vR2.11.1 and the

Bioconductor packages lumi 1.14.0, linear models for microarray

data (limma) 3.4.4, and illuminaHumanv3BeadID.db 1.6.0 (www.

bioconductor.org). Following quality control and pre-processing,

the data were log2-transformed, and differential gene expression

between the sample groups T0, T2, and T24 was determined by
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applying a Benjamin and Hochberg false discovery rate-adjusted

P-value cut-off of 0.05. The total number of probes that were

identified as differentially expressed was analyzed using the

Database for Annotation, Visualization and Integrated Discovery,

DAVID v6.7 [15,16]. Enriched biological processes and pathways

were identified using the GOTERM_BP_FAT and KEGG_-

PATHWAY algorithms, applying a P-value cut-off of 0.01.

Differential expression analysis of the array data was also

performed using a P-value of 0.01 and a log2-fold change cut-off

of 1.0 in order to identify genes whose expression changes could

have potentially high biological significance.

Experimental Human Colorectal Carcinoma Models
The HCT116 and SW620 colorectal carcinoma cell lines were

originally purchased from American Type Culture Collection

(Manassas, VA, USA), and the identities of our laboratory’s

versions were confirmed by short tandem repeat analysis (Table

S1). The LoVo-92 colorectal carcinoma cell line was kindly

provided by Dr. Paul Noordhuis (VU Medical Centre, Amster-

dam, The Netherlands) [17]. The cell lines were cultured as

previously described [8,17]. Xenografts were established by

subcutaneous injections of HCT116 or SW620 cell suspensions

(26106 cells) bilaterally on the flanks of locally bred female BALB/

c nude (nu/nu) or Athymic Nude-Foxn1nu mice, 6–8 weeks of age.

Vorinostat (Cayman Chemical, Ann Arbor, MI, USA; 100 mg/

kg, dissolved in dimethyl sulfoxide to a concentration of 100 mg/

ml immediately before use) or vehicle was given by intraperitoneal

injection 13 days (HCT116) or 20 days (SW620) after establish-

ment of xenografts. Three and 12 hours after administration, the

tumors were extirpated, snap-frozen in liquid nitrogen, and stored

at 270uC. The xenografts were sectioned using a cryostat

microtome prior to RNA extraction using TRIzolH Reagent

(Invitrogen Dynal AS, Oslo, Norway). RNA concentration was

assessed using the RNA/DNA calculator Gene Quent II

(Pharmacia Biotech, Piscataway, NJ, USA).

Tumor Samples from LARC Patients
Primary tumor biopsies were sampled at the time of diagnosis

from LARC patients enrolled onto a phase 2 study on neoadjuvant

chemoradiotherapy (Table S2). The biopsy samples were snap-

frozen in liquid nitrogen and stored at 270uC, and sectioned on

the cryostat microtome, essentially as previously reported [18],

before RNA was extracted.

Figure 1. Treatment schedule for the Pelvic Radiation and Vorinostat phase 1 study. This study combined pelvic palliative radiotherapy
(30 Gy in 3-Gy daily fractions; administered at 12 noon) with the histone deacetylase inhibitor vorinostat (given once daily at 9 a.m.) for advanced
gastrointestinal malignancy. Arrows indicate administration of therapy. Study patients’ peripheral blood mononuclear cells (PBMC) were sampled
before commencement of treatment (T0) and on active therapy, two hours (T2; at 11 a.m. on day 3) and 24 hours (T24; at 9 a.m. on day 3) after the
previous dose of vorinostat.
doi:10.1371/journal.pone.0089750.g001

Table 1. Study patients.

Vorinostat dose
(mg daily)

Age
(years) Gender Comment

100 77 female

200 49 female

200 64 female

200 66 female

300 47 female PBMC a not available

300 66 female

300 77 male

300 81 female

300 82 male

300 87 female PBMC a not available

400 45 female

400 55 male

400 62 male

400 75 female

400 83 female

400 85 female

aPeripheral blood mononuclear cells.
doi:10.1371/journal.pone.0089750.t001
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Reverse Transcriptase Quantitative Polymerase Chain
Reaction (RT-qPCR) Analysis

cDNA was synthesized from total RNA using the qScriptTM

cDNA Synthesis Kit (Quanta BioSciences, Inc., Gaithersburg,

MD, USA). The qPCR was run in Perfecta qPCR Supermix

(Quanta), on iCycler (Bio-Rad Laboratories Norway, Oslo,

Norway) and with all reactions in parallel. Primers were designed

using ProbeFinder Assay Design Software (www.roche-applied-

science.com/sis/rtpcr/upl/ezhome.html), and were obtained from

the Universal ProbeLibrary collection (Roche Applied Sciences,

Oslo, Norway). Primer sequences are listed in Table S3. Amplified

cDNA generated from the reference cell line (LoVo-92) was

included on all PCR plates for relative quantification purposes

(correction of plate-to-plate variation). Data were normalized to

the expression levels of two reference genes; YARS, encoding

tyrosyl-tRNA synthetase, and TBP, encoding the TATA box-

binding protein. When tested in the patient samples, the reference

genes had equal expression per ng of cDNA, independent of

patient treatment (vorinostat dose and time after administration).

The data were analyzed using the GeneExpression Analysis for

iCycler iQH Real-Time PCR Detection System Software

(BioRad), and were calculated relative to the level in the reference

cell line and subsequently log2-transformed.

Statistical Analysis of qPCR Data
Analysis was performed using Predictive Analytics SoftWare

Statistics version 19.0 (SPSS Inc., Chicago, IL, USA). Q-Q plots

were applied to test whether the data were normally distributed or

not, before differences between groups were analyzed using two-

sided Student t-test for the PBMC samples and Mann-Whitney U

test for xenograft samples. P-values less than 0.05 were considered

statistically significant.

Results

PBMC Transcriptional Response to Vorinostat – Biological
Processes and Pathways

Table 1 gives study patient baseline characteristics; the full study

data on treatment tolerability and response have been reported

previously [10,11]. Of the 14 patients that provided a full set of

PBMC samples (T0, T2, and T24), one patient was treated at

vorinostat 100 mg once daily and three patients at the 200 mg

dose level, whereas four and six patients received the medication at

300 or 400 mg once daily, respectively. Importantly, as vorinostat-

induced tumor histone acetylation had been observed at all dose

levels [10], the array data from all patient samples at each time

point (T0, T2, and T24) were pooled, irrespective of the vorinostat

dose administered to the patients. This was done to increase the

statistical power of the testing on analysis of differential gene

expression between the individual time points. As shown by

Figure 2, approximately 2,100 probes were differentially expressed

both at two hours of vorinostat exposure (T2 versus T0) and on the

T24 versus T2 comparison when applying the P-value cut-off of

0.05. Of these, 1,602 transcripts were found to be altered in both

comparisons, and furthermore, no significantly differential expres-

sion was observed when comparing the T0 and T24 groups.

Hence, all of the 1,602 mutual probes that were identified had a

transient change in expression level from T0, with approximately

one half found to be up-regulated and thus, the other half down-

regulated at T2, followed by the opposite directional change to

baseline expression at T24 (data not shown).

Functional annotation analysis of the differentially expressed

genes in patients’ PBMC identified several enriched biological

processes. Comparison of the baseline PBMC transcription profile

with that obtained two hours after vorinostat administration (T2

versus T0) showed that 69 biological processes were over-

represented, whereas the corresponding comparison of T24 versus

T2 transcriptional profiles identified 106 processes (Table S4). As

seen from Table 2, displaying the top-ten Gene Ontology terms for

each of the two comparisons, seven out of the ten biological

processes were present in both, with transcription being the most

significant. In addition, the analysis identified enrichment of genes

involved in catabolic processes, the cell cycle, RNA processing,

chromatin modification, and chromosome organization. The top-

three pathway networks for each of the two comparisons, in

common for both, comprised signaling factors of the cell cycle,

including the p53 pathway (Table 3).

Vorinostat Activity in PBMC – Verification of Selected
Biomarkers

Next, by introducing a log2-fold change cut-off of 1.0 while

decreasing the P-value to 0.01 in order to identify gene expression

changes with presumably high biological significance, the list of

differentially expressed probes, all with a biphasic pattern of

regulation from T0 through T2 and T24, was reduced to 38

candidates (Table 4). Within this panel, two genes had duplicate

array probes, whereas no reference sequence could be identified

for three other probes, leaving 33 known genes as transcriptionally

regulated by vorinostat following this stringent statistical analysis of

the array data.

Selection of genes for verification analysis by RT-qPCR was

based on both the relevance in the DNA damage response, which

is recognized as a significant mechanism contributing to clinical

radiation sensitivity [19], and previous indication of regulation by

HDAC inhibitors. Five of the 33 genes were found to fulfill both

criteria: MYC [20,21] among the ten genes repressed at T2 and

Figure 2. Venn diagram illustrating differentially expressed
genes. Study patients’ peripheral blood mononuclear cells were
sampled at baseline (T0) and on-treatment two and 24 hours after
administration of the daily dose of the study medication vorinostat (T2
and T24, respectively). Gene expression was analyzed by Illumina
Human WG-6 v3 Expression BeadChip arrays. The array data from all
patient samples at each time point (T0, T2, and T24) were pooled for the
analysis. Probes with false discovery rate-adjusted P-values less than
0.05 were considered differentially expressed and subjected to Venn
analysis, comparing by pairs T2 versus T0, T24 versus T2, and T24 versus
T0. The figures represent numbers of probes in common for the various
conditions.
doi:10.1371/journal.pone.0089750.g002
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correspondingly, GADD45B [22], MSH6 [23,24], BARD1 [25,26],

and DDIT3 [27,28] among the 23 induced genes; mean PBMC

expression levels at T0 relative to reference cell line expression are

given in Table S5. These genes were present within the enriched

biological processes and pathways identified by the functional

annotation analysis of the differentially expressed genes (Table 2

and Table 3), and the biphasic pattern of regulation in PBMC

through T2 and T24 was confirmed with significant time-

dependent changes (P,0.01) for all of the five genes (Figure 3).

Vorinostat Activity in Experimental Tumors – Validation
of Selected Biomarkers

We have previously shown histone hyperacetylation in vorino-

stat-treated human colorectal carcinoma xenograft models

(HCT116 and SW620), peaking three hours after vorinostat

administration and with restored baseline levels of histone

acetylation three to six hours later, without accumulative effect

following repeat daily administration [8]. Hence, expression of the

five selected genes was further assessed by RT-qPCR in HCT116

and SW620 xenografts, three and 12 hours after administering

vorinostat to tumor-bearing mice; median control expression levels

relative to reference cell line expression are given in Table S5. In

the HCT116 model, a significant change (P,0.05) in vorinostat-

induced expression was found for MYC only. A similar transient

MYC repression, but without statistically significant differences in

expression levels through the time points, was seen in the SW620

tumors (Figure 3).

Table 2. Enriched biological processes in patients’ peripheral blood mononuclear cells during 24 hours of vorinostat treatment.

Biological process a n (%) P-value Selected transcripts b

T2 versus T0 c

GO:0006350 transcription 253 (17) 5.1610214 MYC, DDIT3

GO:0044265 cellular macromolecule catabolic process 107 (7.2) 8.2610211 MYC, BARD1

GO:0044257 cellular protein catabolic process 93 (6.3) 1.7610210 BARD1

GO:0007049 cell cycle 111 (7.5) 2.3610210 MYC, MSH6, BARD1, DDIT3

GO:0051603 proteolysis involved in cellular protein catabolic process 92 (6.2) 2.9610210 BARD1

GO:0019941 modification-dependent protein catabolic process 89 (6.0) 3.4610210 BARD1

GO:0009057 macromolecule catabolic process 111 (7.5) 3.4610210 MYC, BARD1

GO:0030163 protein catabolic process 94 (6.6) 3.9610210 BARD1

GO:0006396 RNA processing 84 (5.6) 1.861029

GO:0045449 regulation of transcription 276 (19) 5.061029 MYC, DDIT3

T24 versus T2 c

GO:0006350 transcription 260 (17) 8.3610216 MYC, DDIT3

GO:0007049 cell cycle 114 (7.5) 2.6610211 MYC, MSH6, BARD1, DDIT3

GO:0045449 regulation of transcription 286 (19) 5.4610211 MYC, DDIT3

GO:0016568 chromatin modification 55 (3.6) 1.3610210

GO:0006396 RNA processing 86 (5.6) 3.7610210

GO:0044265 cellular macromolecule catabolic process 104 (6.8) 8.8610210 MYC, BARD1

GO:0051276 chromosome organization 78 (5.1) 9.6610210 MSH6

GO:0022402 cell cycle process 85 (5.6) 4.161029 MYC, MSH6, BARD1, DDIT3

GO:0044257 cellular protein catabolic process 89 (5.8) 4.361029 BARD1

GO:0009057 macromolecule catabolic process 107 (7.0) 6.461029 MYC, BARD1

aGene Ontology (GO) terms in bold: present in both comparisons.
bVerified by reverse transcriptase quantitative polymerase chain reaction analysis.
cT0 represents baseline peripheral blood mononuclear cells (PBMC) samples; T2 and T24 represent PBMC samples collected two and 24 hours, respectively, after the
patients had received the daily dose of vorinostat.
doi:10.1371/journal.pone.0089750.t002

Table 3. Enriched biological pathways in patients’ peripheral blood mononuclear cells during 24 hours of vorinostat treatment.

Biological pathway n (%) P-value Genes a

hsa04130 SNARE interactions in vesicular transport 10 (0.85) 1.661024 STX6, STX5, STX1A, STX12, STX16, USE1, BET1, BET1L, GOSR1, VAMP1

hsa04115 p53 signaling pathway 13 (1.1) 2.761024 PMAIP1, RRM2B, SESN2, CDK4, CDK2, CCNE2, CCNE1, PPM1D, TNFRSF10B,
RCHY1, APAF1, GADD45B, GADD45A

hsa04110 cell cycle 17 (1.5) 0.0012 CCNH, ANAPC13, CDC23, CDK7, PTTG1, CDK4, ZBTB17, TGFB1, WEE1, CDK2,
CCNE2, CCNE1, YWHAG, CDKN2D, GADD45B, GADD45A, MYC

aGenes in bold: verified by reverse transcriptase quantitative polymerase chain reaction analysis.
doi:10.1371/journal.pone.0089750.t003
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Table 4. Differentially expressed genes in patients’ peripheral blood mononuclear cells during 24 hours of vorinostat treatment. a

Accession no. Gene b Gene name
T2 versus T0 c (log2-fold
change)

T24 versus T2 c (log2-fold
change)

NM_005627 SGK1 serum/glucocorticoid regulated kinase 1 21.58 1.65

NM_016478 ZC3HC1 zinc finger, C3HC-type containing 1 21.43 1.39

NM_175571 GIMAP8 GTPase, IMAP family member 8 21.23 1.34

NM_206938 MS4A7 membrane-spanning 4-domains, subfamily A,
member 7

21.21 1.06

NM_002467 MYC v-myc myelocytomatosis viral oncogene
homolog (avian)

21.20 1.09

NM_001024938 SLC2A11 solute carrier family 2 (facilitated glucose
transporter), member 11

21.16 1.17

NM_004843 IL27RA interleukin 27 receptor, alpha 21.14 1.05

NM_000104 CYP1B1 cytochrome P450, family 1, subfamily B,
polypeptide 1

21.13 1.26

NM_207007 CCL4L2 chemokine (C-C motif) ligand 4-like 2 21.04 1.26

NM_014167 CCDC59 coiled-coil domain containing 59 21.02 1.00

NM_005346 HSPA1B heat shock 70kDa protein 1B 1.82 22.02

NM_153812 PHF13 PHD finger protein 13 1.80 21.95

NM_001564 ING2 inhibitor of growth family, member 2 1.59 21.71

NM_001564 ING2 inhibitor of growth family, member 2 1.56 21.56

NM_001001870 none none 1.42 21.28

NM_016639 TNFRSF12A tumor necrosis factor receptor superfamily,
member 12A

1.40 21.33

NM_152339 SPATA2L spermatogenesis associated 2-like 1.38 21.46

NM_025079 ZC3H12A zinc finger CCCH-type containing 12A 1.36 21.29

NM_015675 GADD45B growth arrest and DNA-damage-inducible, beta 1.30 21.17

NM_013368 SERTAD3 SERTA domain containing 3 1.24 21.30

NM_004219 PTTG1 pituitary tumor-transforming 1 1.23 21.35

NM_014711 CP110 CP110 protein 1.20 21.21

NM_005341 ZBTB48 zinc finger and BTB domain containing 48 1.14 21.03

NM_000179 MSH6 mutS homolog 6 (E. coli) 1.13 21.23

NM_153358 ZNF791 zinc finger protein 791 1.13 21.07

NM_006494 ERF Ets2 repressor factor 1.12 21.06

NR_002734 PTTG3P pituitary tumor-transforming 3, pseudogene 1.11 21.18

NM_016605 FAM53C family with sequence similarity 53, member C 1.07 21.13

NM_004219 PTTG1 pituitary tumor-transforming 1 1.07 21.13

not available none transcribed locus Hs.559604 1.07 21.08

NM_000024 ADRB2 adrenergic, beta-2-, receptor, surface 1.07 21.07

XM_926814 none none 1.05 21.19

NM_006806 BTG3 BTG family, member 3 1.05 21.04

NM_031212 SLC25A28 solute carrier family 25 (mitochondrial iron
transporter), member 28

1.05 21.00

NM_000465 BARD1 BRCA1 associated RING domain 1 1.02 21.23

NM_004083 DDIT3 DNA-damage-inducible transcript 3 1.02 21.08

NM_052901 SLC25A25 solute carrier family 25 (mitochondrial carrier;
phosphate carrier), member 25

1.02 21.06

NM_024954 UBTD1 ubiquitin domain containing 1 1.01 21.01

aLog2-fold change higher than 1.0; P-value less than 0.01.
bGenes in bold: chosen for validation of expression in the study patients’ peripheral blood mononuclear cells (PBMC) samples and human colorectal carcinoma
xenograft models.
cT0 represents baseline PBMC samples; T2 and T24 represent PBMC samples collected two and 24 hours, respectively, after the patients had received the daily dose of
vorinostat.
doi:10.1371/journal.pone.0089750.t004
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LARC – Primary Tumor MYC Expression
On identifying MYC repression as a possible biomarker of

HDAC inhibitor activity from the strategy of analyzing, firstly,

PRAVO study patients’ PBMC, and secondly, vorinostat-treated

colorectal carcinoma xenografts, and additionally recognizing this

drug as a rational approach for biological optimization of radiation

effect in pelvic gastrointestinal carcinoma [10], we investigated

whether MYC might be expressed in the target tissue of a well-

established pelvic radiotherapy protocol. In 27 LARC patients

receiving neoadjuvant chemoradiotherapy [18], MYC expression

was detected in all primary tumor samples, though at highly

variable levels (median expression value was 0.47 (range 0.020–

4.9) relative to reference cell line expression), but was essentially

not associated with patient characteristics or treatment outcome in

this small cohort (Table S2).

Discussion

Within the design of the PRAVO phase 1 study (Figure 1),

combining the HDAC inhibitor vorinostat with fractionated

radiation to pelvic targets volumes for determination of treatment

tolerability and response, gene expression array analysis was

performed of study patients’ PBMC, sampled at baseline (T0) and

on-treatment two and 24 hours (T2 and T24) after the patient had

received the daily dose of vorinostat, in order to identify possible

biomarkers of HDAC inhibitor activity. This strategy revealed

1,600 array probes with biphasic pattern of expression from T0

through T2 and T24 across all of the study patients. A significant

number of these genes were found implicated in processes

comprising gene regulation, the cell cycle, and chromatin biology.

Applying stringent criteria for array data analysis, five genes were

recognized both as players in the DNA damage response and

targets for regulation by HDAC inhibitors, and were therefore

selected for validation of expression pattern both in study patients’

PBMC and in human colorectal carcinoma xenograft models. Of

these, only MYC consistently showed rapid and transient

repression in all conditions that were tested.

In the setting of fractionated radiotherapy, a synergistic drug

should preferably elicit a radiosensitizing molecular event at each

radiation fraction; hence, a pharmacodynamic biomarker should

reflect the timing of drug administration with regard to radiation

exposure in a periodic manner [1]. Importantly, in a prior

preclinical in vivo study combining vorinostat and fractionated

radiation, we observed that tumor histone acetylation, considered

a biomarker of vorinostat activity in the radiotherapy target tissue,

reached a maximum three hours after intraperitoneal vorinostat

injection into the experimental animals and was restored to

baseline acetylation level three to six hours later, but with a

repetitive, transient induction of acetylation following repeat

injections. Of note, tumor growth inhibition after fractionated

radiation, representing a long-term phenotypic outcome of the

experimental manipulations, was significantly enhanced both

when radiation was delivered at peak and restored histone

acetylation levels [8]. Consequently, tumor histone hyperacetyla-

tion did not seem to be required at the time of radiation exposure,

leaving the question of the optimum temporal relationship

between administration of the radiosensitizing drug and radiation

delivery unaddressed.

In the PRAVO study, one patient at each vorinostat dose level

had both baseline (before commencement of study treatment)

and repeat tumor biopsy two-and-a-half hours after administra-

tion of vorinostat (on day 3 of the treatment protocol). Histone

hyperacetylation was observed in all on-treatment biopsy samples

[10], confirming the presence of vorinostat in the target at the

time of the daily radiation exposure. However, given that one of

the objectives of the study was to determine mechanisms of the

presumed radiosensitizing action of vorinostat that were not

simultaneously manifesting molecular perturbations elicited by

the radiation itself, non-irradiated surrogate tissue was collected

for the purpose of identifying new biomarkers. Several investi-

gators have demonstrated PBMC histone hyperacetylation on

HDAC inhibitor treatment [14,29,30]. With these aspects in

mind, PBMC were deemed to represent a relevant surrogate

tissue for studying radiosensitizing effects of vorinostat in the

context of this clinical trial.

Interestingly, using the study patients’ PBMC as surrogate tissue

for vorinostat exposure, all of the 1,600 probes that were found to be

common for the comparisons T2 versus T0 and T24 versus T2 in

principle represented pharmacodynamic biomarkers of the chosen

timing of vorinostat administration in the fractionated radiotherapy

Figure 3. Validation of vorinostat-regulated expression of
selected genes. Study patients’ peripheral blood mononuclear cells
(PBMC) were sampled at baseline (T0) and on-treatment two (T2) and 24
(T24) hours after administration of the daily dose of the study
medication vorinostat, and expression of MYC, GADD45B, MSH6, BARD1,
and DDIT3 was analyzed by reverse transcriptase quantitative polymer-
ase chain reaction (RT-qPCR). Correspondingly, mice bearing HCT116 or
SW620 xenografts were injected intraperitoneally with vehicle (control,
C) or vorinostat, and xenografts were harvested three (T3) and 12 (T12)
hours after injection for RT-qPCR analysis of MYC expression. Relative
gene expression (log2-fold change) for each comparison is given as
mean 6 SEM of the PBMC sample values (n = 14) and as median and
range of the values from control (n = 8 for HCT116; n = 4 for SW620) and
vorinostat-treated (n = 4 for HCT116; n = 2 for SW620) xenografts. The
compared gene expression levels were significantly different within the
PBMC (P,0.01) and HCT116 (P,0.05) sample groups, while the
differences were non-significant for the SW620 tumors.
doi:10.1371/journal.pone.0089750.g003
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protocol. The genes showed rapid and transient induction or

repression, thus mirroring the kinetics of the histone acetylation

response. This observation implies that the design of the PRAVO

study, undertaken in patients with advanced gastrointestinal cancer,

may not have provided the optimum context for detailed capture of

molecular effects of vorinostat. Thus, ethical concerns may

challenge the structure required within a clinical trial setting for

evaluating novel biomarker endpoints. Nevertheless, in the PRAVO

study, functional annotation analysis of the panel of 1,600 probes

identified biological processes and pathways comprising gene

regulation (transcription, RNA processing), cell cycle progression

(including p53 signaling, commonly involved in the DNA damage

response), and chromatin biology. These findings are consistent with

well-known cellular perturbations following exposure of experi-

mental tumor models to HDAC inhibitors [2–5].

Investigation of biomarkers of HDAC inhibitor activity has

been undertaken in a number of clinical therapy trials. These

include the demonstration of increased histone acetylation in

patients’ PBMC in the early trials [14,29,30] and the more recent

confirmation of changes in tumor expression of acetylated histone

and non-histone proteins [10,14,31,32], the HDAC2 enzyme [31]

and HR23B protein [33,34], the latter been proposed as predictive

biomarker [35], and of tumor proliferation index [36]. Plasma

protein profiling has been done in glioblastoma patients receiving

vorinostat in combination with an established cytotoxic regimen

[37]. Furthermore, tumor gene expression array analysis has been

performed in a study with the HDAC inhibitor panobinostat as

single agent [38] and in one trial each of combining either

vorinostat or valproate with other biologic agents (in non-small cell

lung carcinoma and acute myeloid leukemia, respectively) [39,40].

To our knowledge, the present study is the first to report on gene

expression array analysis as an attempt to identify pharmacody-

namic biomarker(s) reflecting timing of HDAC inhibitor admin-

istration with regard to an established cytotoxic regimen.

The criteria for selecting genes for validation were both their

presumed relevance in the DNA damage response and previous

indications of regulation by an HDAC inhibitor [22–24,28,41],

and additionally, in order to find ‘tumor-specific’ markers,

omitting genes that typically might be associated with leukocyte

biology. Four of the selected genes were induced by vorinostat in

the study patients’ PBMC but did not show a similar response in

the experimental tumor models. BARD1 encodes a nuclear factor

with tumor suppressor activity [24], the stress response effectors

encoded by GADD45B and DDIT3 are implicated in cell cycle

arrest, DNA repair, and apoptosis [42,43], and MSH6 encodes a

DNA mismatch repair protein [44]. To date, only three studies

seem to have been published on their potential use as biomarkers

of therapy response [45–47]. In contrast, the confirmation of MYC

as the only one of the selected genes with rapid and transient

change in expression in all tested conditions (i.e., both in the study

patients’ PBMC and experimental tumor models) may point to a

particular importance of myc in the therapeutic setting with

fractionated radiation. Future investigations of vorinostat as

possible radiosensitizing agent might be within a long-term

curative radiotherapy protocol, for example as an additional

component of neoadjuvant chemoradiotherapy for LARC. The

confirmed presence of MYC expression in the intended radiother-

apy target tissue (primary rectal tumors) in LARC patients

encourages future exploration of this proto-oncogene as a novel

biomarker endpoint.

The myc protein acts both as transcriptional activator and

repressor, regulating a myriad of genes that collectively conduct

cell cycle progression, apoptosis, angiogenesis, and genetic

instability [48]. Specifically, it has been suggested that myc

activates DNA damage repair genes [20], and interestingly, that

myc in hypoxic tumors acts synergistically with the transcription

factor hypoxia-inducible factor type 1a, HIF-1a [49,50]. Recent

evidence indicates that HDAC inhibition suppresses HIF-1a
activity [51,52]. Consequently, mitigation of DNA damage repair

capacity through suppression of myc/HIF-1a synergy in hypoxic

tumors [53,54], typically being resistant to radiation, provides an

appealing explanation for the radiosensitizing effect of HDAC

inhibitors.

However, conflicting data have been presented as to how

HDAC inhibition may influence the myc protein itself. Whereas

inhibition of various HDAC enzymes has been shown to cause

myc repression in a range of human cancer cell lines [21,55–57],

which corresponds well with the data in the present study, specific

nuclear induction of myc to mediate HDAC inhibitor-induced

apoptosis in glioblastoma cell lines has also been demonstrated

[58]. Interestingly, in nasopharyngeal carcinoma cells that were

resistant to radiation, myc was found to be essential through the

transcriptional activation of cell cycle checkpoint kinases [59],

which are signaling factors implicated in DNA damage repair,

thereby facilitating tumor cell survival following radiation expo-

sure. On the contrary, although radiosensitization was conferred

by HDAC inhibition both in hypoxic and normoxic hepatocellular

carcinoma cells, a lower level of myc expression was associated

with the hypoxic and more radioresistant condition [60]. Of

particular note, in the present study, the vorinostat-induced

repression of MYC was found both in study patients’ PBMC,

clearly representing normoxic tissue, and experimental tumors

that also were tested under normoxic conditions.

In conclusion, integral in the PRAVO study design was the

collection of non-irradiated surrogate tissue for the identification of

biomarker(s) of vorinostat activity to reflect the timing of

administration and also suggest the mechanism of action of the

HDAC inhibitor. This objective was achieved by gene expression

array analysis of study patients’ PBMC and as a consequence, the

identification of genes that from experimental models are known

to be implicated in biological processes and pathways governed by

HDAC inhibitors. Importantly, all of the identified genes showed

rapid and transient induction or repression and therefore, in

principle, fulfilled the requirement of being pharmacodynamic

biomarkers for this radiosensitizing drug in fractionated radio-

therapy. Among the identified candidate genes, MYC repression

was found in all patient samples and tested experimental

conditions, possibly underscoring the impact of the myc proto-

oncogene in this particular therapeutic setting.
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