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  Abstract   It has long been considered that the important biological effects of 
 ionizing radiation are a direct consequence of unrepaired or misrepaired DNA dam-
age occurring in the irradiated cells. It was presumed that no effect would occur in 
cells in the population that receive no direct radiation exposure. However, in vitro 
evidence generated over the past two decades has indicated that non-targeted cells 
in irradiated cell cultures also experience signi fi cant biochemical and phenotypic 
changes that are often similar to those observed in the targeted cells. Further, non-
targeted tissues in partial body-irradiated rodents also experienced stressful effects, 
including oxidative and oncogenic effects. This phenomenon, termed the “bystander 
response,” has been postulated to impact both the estimation of health risks of expo-
sure to low doses/low  fl uences of ionizing radiation and the induction of second 
primary cancers following radiotherapy. Several mechanisms involving secreted 
soluble factors, oxidative metabolism, gap-junction intercellular communication, 
and DNA repair, have been proposed to regulate radiation-induced bystander effects. 
The latter mechanisms are major mediators of the  system  responses to ionizing radi-
ation exposure, and our knowledge of the biochemical and molecular events involved 
in these processes is reviewed in this chapter.      
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   Introduction 

 The absorption of ionizing radiation by living cells can directly disrupt atomic 
structures, producing chemical and biological changes. It can also act indirectly 
through radiolysis of water, thereby generating reactive chemical species that may 
damage nucleic acids, proteins, and lipids  [  1  ]  (Fig.  1 ). Together, the direct and indi-
rect effects of radiation initiate a series of biochemical and molecular signaling 
events that may repair the damage, or culminate in permanent physiological changes 
or cell death  [  2  ] .  

 Interestingly, the early biochemical modi fi cations, which occur during or shortly 
after radiation exposure, were thought to be responsible for most of the effects of 
ionizing radiation in mammalian cells. However, oxidative changes may continue to 
arise for days and months after the initial exposure, presumably because of 
in fl ammatory responses  [  3,   4  ]  and continuous generation of reactive oxygen (ROS) 
and nitrogen (RNS) species  [  5  ] . Remarkably, these processes occur not only in the 
irradiated cells but also in their progeny  [  2,   6–  9  ] . Furthermore, radiation-induced 
oxidative stress may spread from targeted cells to non-targeted bystander cells 
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  Fig. 1    The direct and indirect effects of ionizing radiation on cellular macromolecules. Absorption 
of ionizing radiation by living cells directly disrupts atomic structures, producing chemical and 
biological changes and indirectly through radiolysis of cellular water and generation of reactive 
chemical species by stimulation of oxidases and nitric oxide synthases. Ionizing radiation may also 
disrupt oxidative metabolism and other mitochondrial functions contributing to persistent altera-
tions in lipids, proteins, nuclear DNA (nDNA), and mitochondrial DNA (mtDNA)       
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  Fig. 2    Ionizing radiation (IR) induces targeted and non-targeted (bystander) effects. 
Communication of stress-inducing molecules from cells exposed to IR propagates stressful 
effects, including oxidative stress, as well as genetic and epigenetic changes, to the bystander 
cells and their progeny. The induced effects may be similar in nature to those observed in progeny 
of irradiated cells       

through intercellular communication mechanisms (reviewed in  [  10–  13  ] ). The prog-
eny of these bystander cells also experience perturbations in oxidative metabolism 
and exhibit a wide range of oxidative damages, including protein carbonylation, 
lipid peroxidation, and enhanced rates of spontaneous gene mutations as well as 
neoplastic transformation  [  14–  16  ]  (Fig.  2 ). The persistence of such stressful effects 
in progeny cells may have profound implications for long-term health risks, includ-
ing the emergence of a second malignancy following radiotherapy treatments  [  17–  20  ] . 
Understanding the mechanisms underlying non-targeted effects, together with those 
that mediate targeted effects, will be informative for counteracting adverse health 
effects caused by exposure to ionizing radiation, and may lead to formulation of 
countermeasures.   

   Ionizing Radiation Track Structure and the Nature 
of Induced Biological Effects 

 Strong evidence has shown that the magnitude and nature of radiation-induced 
bystander effects greatly depend on the biophysical properties of the impacting 
radiation. Thus, a review of bystander effects would be facilitated by a brief intro-
duction to the different types of ionizing radiation and their energy deposition 
patterns. 

 Ionizing radiation is classi fi ed as either electromagnetic or particulate. Whereas 
X and  g  rays belong to electromagnetic radiation, energetic electrons, protons, 
neutrons,  a -particles, and heavy charged particles are different forms of particu-
late radiation  [  1  ] . Many of the damaging effects of radiation are due to the geom-
etry of the physical energy deposition of the impacting radiation, referred to as 
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the track structure or linear energy transfer (LET) effects  [  21  ] . In irradiated cells, 
such energy deposition causes endogenous bursts of ROS that result mainly from 
water radiolysis in and around the radiation track as well as in the intercellular 
matrix. The differences in ionization patterns due to different types of radiation 
mainly arise from differences in charge-to-mass ratio of the impacting particles; 
for example,  a -particles differ from electrons by a factor of ~8,000. Thus, whereas 
low-LET X and  g  rays produce sparse ionization and excitation events along their 
trajectory, high LET  a -particles or high charge ( Z ) and high energy ( E ) HZE par-
ticles produce a dense track of ionizations and excitations along the particle path 
 [  22  ] . The track structure determines the relative potency of different types of 
radiation in causing biological effects  [  23,   24  ]  (Fig.  3 ). Following exposure to 
high LET radiations (e.g.,  a -particles, HZE particles), the yield of locally multi-
ply damaged sites (LMDS) in DNA is greatly increased  [  6,   25,   26  ] .  

 Whereas ~60 ROS per nanogram of tissue are generated within less than a micro-
second from a hit caused by  137 Cs  g  rays, ~2,000 ROS are generated from a 3.2 MeV 
 a -particle traversal, which corresponds to an ROS concentration of ~19 nM in the 
nucleus  [  27  ] . Such a nuclear ROS concentration can obviously cause extensive oxi-
dative injury and modify normal biochemical reactions  [  28,   29  ] . As a result, different 
signaling cascades responding to these stress conditions are triggered. For example, 
adaptive responses encompassing DNA repair and antioxidation reactions may be 
triggered following exposures to low doses of low LET radiations (X and  g  rays) 
 [  30–  32  ] . The protective mechanisms may overcompensate, resulting in stimulatory 
responses that enhance the well-being of the organism long after the exposure  [  33, 
  34  ] . In contrast, basal and induced signaling cascades do not seem to completely 
alleviate the complex damages induced by low  fl uences of high LET radiations (e.g., 
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 a - and HZE particles)  [  35–  37  ]  or high doses of X and  g  rays  [  38  ] . Damaging effects 
endure and may spread to neighboring bystander cells  [  39  ]  and persist in their prog-
eny  [  15,   16  ]  (Fig.  2 ). Thus, the track structure is crucial for dictating the size and 
precise location of the initial radiation-induced ROS bursts and their subsequent 
signaling or damaging effects  [  40–  43  ] . The bursts of ROS, and also of RNS resulting 
from activation of nitric oxide synthases may affect directly or indirectly proteins/
genes that participate in oxidative metabolism  [  44,   45  ] . The persistence of such per-
turbations in the normal oxidative metabolism is associated with chronic in fl ammatory 
responses  [  6,   46,   47  ] , which impacts non-targeted effects (reviewed in  [  48,   49  ] ).  

   Ionizing Radiation-Induced Bystander Responses 

 In a landmark study in 1992, Nagasawa and Little  [  39  ]  presented evidence indi-
cating that genetic changes occurred in a greater number of cells than expected 
when Chinese hamster ovary cell cultures were exposed to low  fl uences of  a -par-
ticles that targeted only a small fraction of the cells. An enhanced frequency of 
sister chromatid exchanges (SCEs) in 20–40% of Chinese hamster ovary cells was 
observed in cultures exposed to  fl uences by which only 0.1–1% of the cells’ nuclei 
were actually traversed by a particle track. These results indicated that the target 
for genetic damage by  a -particles is much larger than the nucleus or in fact much 
larger than the cell itself. Those observations in  a -particle-irradiated cell cultures 
were soon con fi rmed by other laboratories  [  50–  55  ] . Similar effects were also 
detected in cocultures of bystander cells and cells exposed to external beams of 
low LET radiations  [  56–  60  ]  and high LET radiations besides  a -particles  [  61,   62  ] , 
thus highlighting their relevance to radiotherapy, diagnostic radiology, and health 
risks of environmental and occupational exposures (reviewed in  [  11–  13,   63  ] ). In 
related studies, it has also been shown that when cells are labeled with tritiated 
thymidine in a three-dimensional multicellular cluster model, a cytotoxic effect is 
transmitted to adjoining non-labeled cells present in the same cluster  [  56,   60  ] .

Consistent with these studies, a cytotoxic bystander effect produced by tumor 
cells labeled with 5-[ 125 ]iodo-2 ¢ -deoxyuridine was demonstrated in vitro  [  64  ]  and 
in vivo  [  59  ] . Furthermore, media transfer experiments have shown that incubating 
nonirradiated cells with growth medium harvested from  a -particle or  g -irradiated 
cell cultures can induce biological effects in the medium-recipient cells  [  65–  67  ] . 
Together, the studies have shown that upregulation of stress-responsive genes and 
proteins, genetic and epigenetic changes, induction of cell cycle checkpoints and 
cell killing occur in both irradiated and neighboring bystander cells, and the effects 
occur in various cell types of human and rodent origin at different stages of growth 
(reviewed in  [  7,   11,   12,   63,   68–  73  ] ). Mechanistic studies have shown that direct and 
indirect modes of intercellular communication, oxidative metabolism, and DNA 
repair processes can mediate these effects  [  53,   74,   75  ] ; however, the exact molecular 
steps involved have not been de fi ned  [  76  ] . 



40 E.I. Azzam et al.

 In addition to observations in tissue culture experiments, signi fi cant 
 radiation-induced bystander effects were detected in human tissue models  [  77–  79  ]  
and in animal experiments  [  7,   80–  82  ] . Signi fi cantly,  a -particle emitters concen-
trated in the liver of Chinese hamsters showed that all cells in the liver are at the 
same risk for the induction of chromosome damage, when only a small fraction of 
the total liver cell population is exposed to  a -particles  [  83,   84  ] . With signi fi cance to 
cancer risk, non-targeted oncogenic radiation effects were observed in the cerebel-
lum of radiosensitive mice, when only the rest of their body was X-irradiated  [  85  ] . 
Besides radiotherapy, where often only small areas of the body are irradiated, the 
occurrence of in vivo stressful non-targeted effects could have signi fi cant conse-
quences during particular activities, such as mining or space travel, when often only 
parts of the human body are irradiated at any one time  [  17  ] . In the case of deep 
space travel, it has been estimated that an astronaut’s body would be exposed,  daily , 
to very low mean doses of densely ionizing radiations  [  86  ] . At the typical doses 
encountered  [  87,   88  ] , only a very small fraction of cells in the human body would 
experience the large ionization events created along the tracks of such radiations 
 [  87,   88  ] . Moreover, the radiation traversals would be separated in both tissue loca-
tion and time  [  61  ] . The possibility of increased risk of carcinogenesis caused by 
exposure to space radiation during prolonged space travel has been considered a 
limiting factor for human space exploration  [  89  ] . 

 Whereas radiation-induced bystander effects have been extensively investigated 
in the past 20 years, interactions between irradiated and nonirradiated cells have 
been suggested from observations made decades earlier showing that blood plasma 
from individuals undergoing radiotherapy or from individuals who were acciden-
tally irradiated has a clastogenic effect on normal nonexposed cells  [  90,   91  ] . 

 Overall, a multitude of studies challenge the paradigm that radiation traversal 
through the nucleus of a cell is the only prerequisite for the production of genetic dam-
age or a biological response. They indicate that cells in the vicinity of directly irradiated 
cells or those receiving media from irradiated cultures can respond to the radiation 
exposure. They denote that cell populations exposed to ionizing radiation respond as an 
integrated unit rather than separate individual cells that have been irradiated. They point 
to a critical role for intercellular communication in mediating bystander responses. 

 Bystander effects are not unique in demonstrating that biological changes can 
occur in cells that do not receive radiation directly. Evidence gathered over the last 
two decades from two different areas of study has also shown that genetic damage 
in cells need not be a direct consequence of direct nuclear irradiation. (1) Genomic 
instability experiments have shown that the progeny of cells that survive a radiation 
exposure harbor a spectrum of genetic lesions that are different in nature from the 
lesions that initially occurred in the irradiated parental cells  [  35,   38,   92,   93  ] . The 
endpoints studied have included malignant transformation  [  94,   95  ] , chromosomal 
aberrations  [  35,   96  ] , speci fi c gene mutations  [  97  ] , and cell survival  [  98–  100  ] . 
Typically, this phenomenon has been studied by examining the occurrence of genetic 
effects in clonal populations derived from single cells surviving radiation exposure; 
though, chromosomal instability was also reported in the descendants of unirradiated 
surviving cells after  a -particle-irradiation  [  101  ] . (2) Individual charged particles 
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targeted to speci fi c organelles in the cell using microbeam technology showed that 
gene mutations do occur following cytoplasmic irradiation  [  102  ] . Mutagenesis by 
cytoplasmic irradiation was induced even by a single  a -particle traversal and reached 
a plateau after hits by four to eight particles, which elicited minimal cytotoxicity 
and induced a class of mutations that is entirely different from those produced by 
nuclear irradiation. The nature of the induced mutations consisted mainly of base 
damage and suggested the involvement of ROS.  

   Mechanisms of Radiation-Induced Bystander Effects 

  The role of transmissible factor(s) generated by irradiated cells : Support of a role 
for soluble transmissible factor(s) released by irradiated cells that in turn induces 
effects in nonirradiated cells came not only from medium transfer experiments but 
also from irradiation of subcon fl uent cultures with  a -particles. Targeting the nuclei 
of a few cells in a subcon fl uent culture of mammalian cells with  a -particles resulted 
in the induction of damage (micronucleus formation and apoptosis) in a greater 
fraction of cells than those that were irradiated  [  103  ] . In these studies, targeting the 
 a -particles outside the cells failed to generate an effect, suggesting that the induced 
bystander effects were due to transmissible factor(s) released from the irradiated 
cells. Other studies showed that  a -particle irradiation of cultured cells generated a 
factor(s) able to induce SCEs in bystander cells; the factor(s) survived freeze thaw-
ing and was heat labile  [  104  ] . In parallel experiments contrasting those where 
 a -particles were targeted outside cells, the same group showed that  a -particle irra-
diation of culture medium devoid of cells also caused the generation of SCE-
inducing factor(s); such factors however were short-lived  [  104  ] . In both situations, 
the supernatant from irradiated cells or irradiated medium caused the induction of 
excessive SCEs in unirradiated cells to the same extent observed with direct  a -particle-
irradiated cell cultures. Interestingly, both the short-lived medium- and cell-derived 
SCE-inducing activities were inhibited by the antioxidant enzyme superoxide dis-
mutase (SOD), suggesting that ROS are involved in the response. 

 The effects of  a -particle-irradiated medium with or without cells on bystander 
responses were studied by a novel approach utilizing cells plated on either one or 
both sides of double-mylar dishes  [  105  ] . The distance between the mylar surfaces in 
such dishes was 9.5 mm. It was argued that since low energy  a -particles can only 
travel a distance of about 50  m m when one side with or without cells was irradiated, 
cells on the other side would not receive any hits. Irradiation of Chinese hamster–
human hybrid cells on one side of the dish with 1, 10, or 100 Gy resulted in cytotox-
icity to the bystander cells when they were cocultured with the irradiated cells for 
48 h. Using the same irradiation setup, Hu et al.  [  106  ]  demonstrated that protein 
kinase C (PKC) epsilon is up-regulated in bystander  fi broblasts. Blocking its expres-
sion with a small molecule inhibitor reduced the induction of micronuclei in 
bystanders by either  g  rays or  a -particles, supporting a role for PKC signaling in the 
bystander response. 
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 It has been suggested that secreted TGF- b 1  [  107–  110  ] , IL-8  [  111  ] , or prostaglandins 
 [  112,   113  ]  in the medium of  a -particle-irradiated cultures may have a role in medi-
ating bystander responses. As the signaling molecule(s) have proven dif fi cult to 
isolate from the culture medium; however, an increasing number of studies have 
applied focused or whole-genome expression pro fi ling techniques to help gain 
insight into potential signaling from the irradiated cells and the response in the 
bystander cells. Medium transfer experiments have been used to investigate 
bystander gene expression triggered by low LET  g - or X-ray exposures in both 
 fi broblasts  [  114  ]  and lymphoblasts  [  115,   116  ]  or erythroleukemia cells  [  117  ] . Genes 
involved in oxidative phosphorylation and mitochondrial function and dysfunction 
were overrepresented among the genes responding in bystanders in experiments 
with  fi broblasts  [  114  ]  and lymphoblasts  [  118  ] . Interestingly, in the lymphoblasts, 
some mitochondrial genes responded the same in irradiated cells and bystanders, 
but a subset of these genes were up-regulated by direct irradiation and down-regu-
lated in the bystanders. A similar result was reported in erythroleukemia cells, 
where 0.6% of the genes were found to change in the opposite direction in bystand-
ers and irradiated cells  [  117  ] . 

 Gene expression has also been pro fi led in  fi broblast bystanders to high LET 
particle-irradiated cells, using medium transfer  [  118  ] , carbon ion microbeam irra-
diation  [  119  ] , and a two-layered Mylar strip dish  [  55  ] . The latter case employs 
custom culture dishes, consisting of two concentric rings with a thin Mylar bottom 
on the outer dish, and strips of thicker Mylar on the inner dish, allow  a -particle 
bystander exposures in situ. The cells are grown as a contiguous monolayer, but 
only the cells growing directly on the thinner Mylar will be exposed to  a -particles, 
while the adjacent bystanders growing on the thicker Mylar strips will be com-
pletely shielded. Using this approach, we have documented an attenuated response 
of genes regulated by TP53 in the bystander cells, and a robust response of NF k B-
regulated genes  [  55  ] . The NF k B response was essentially identical in both magni-
tude and timing in the irradiated cells and bystanders. Further network analysis also 
implicated KDM5B and HDAC1 and 2 in gene regulation in bystander  fi broblasts. 
These regulators were found to change at the protein level in both irradiated and 
bystander cells, suggesting a possible role for epigenetic regulation of bystander 
responses  [  56  ] . 

 Network analysis also implicated AKT in early signal transduction, possibly 
through the GSK3B/CTNNB1 pathway. We found that AKT was phosphorylated 
in response to radiation by half an hour after exposure, when there was no change 
in bystanders. By 1–4 h after exposure, however, levels were similarly elevated in 
both the irradiated and bystander cells  [  120  ] . CTNNB1 was also dephosphory-
lated to similar levels between 4 and 8 h after exposure in both irradiated and 
bystander cells. 

 The same series of experiments also identi fi ed a number of genes coding for 
potential extracellular signaling molecules that were up-regulated in both irradiated 
and bystander  fi broblasts. These included genes previously implicated in bystander 
response, such as IL8, IL1A, and IL1B, as well as new candidates, such as IL6, 
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IL33, LIF, and FGF2. We found that blocking the activity of IL33 by adding speci fi c 
antibodies to the culture medium blocked activation of NF k B in both irradiated and 
bystander cells  [  113  ] . Regulation of IL33 expression in response to direct or 
bystander irradiation was also con fi rmed to be under the control of the AKT 
pathway. 

 In other experiments involving high LET radiations, a mitogenic bystander 
effect was also observed. Exposure of normal human lung  fi broblasts (NHLF), 
maintained in culture, to a low mean dose of  a -particles stimulated their prolifera-
tion; the response also occurred when unirradiated cells were treated with superna-
tants from  a -particle or heavy ion-irradiated cells. TGF- b 1 was implicated in 
mediating the observed effects in the  a -particle experiments  [  121  ] , and nitric oxide 
apparently contributed to the modest enhancement in cell proliferation and induc-
tion of micronuclei observed in bystander cells in the heavy ion study  [  122  ] . The 
occurrence of such mitogenic effects has been suggested to contribute to the hyper-
plastic responses in the conducting airways of the lower respiratory track that occur 
after inhalation exposure to radon and other environmental stresses  [  121  ] . The 
stimulatory growth response observed in these media transfer studies is contradic-
tory to the observation that transient and permanent arrests in G 

1
  phase of the cell 

cycle are induced in normal human cell cultures exposed to mean doses as low as 
1 cGy where bystander cells participate in the overall response of the exposed cell 
population  [  123  ] . It is possible that following an initial arrest in G 

1
 , an enhance-

ment in cell growth of the irradiated cells occurs. Further analyses of the kinetics 
of induction of molecules associated with cell growth or cell cycle arrest are needed 
in support of these studies. 

 In contrast to the above studies, conditioned medium harvested from keratino-
cytes exposed to  g  rays (a low LET radiation) and added to recipient control kerati-
nocytes or  fi broblasts  [  65  ]  resulted in a toxic effect in the recipient cells. The effect 
was dependent on the type and number of cells in the exposed cultures. Medium 
harvested from irradiated keratinocytes had a greater cytotoxic effect on  fi broblast 
bystander cells than on keratinocytes, while medium from irradiated  fi broblasts had 
no effect on either keratinocyte or  fi broblast bystander cells  [  65  ] . The factor(s) lead-
ing to such bystander effects appeared to be released by the irradiated cells within 
the  fi rst few hours after exposure. It was suggested that the released factor(s) may 
be a protein as it was labile when heated but stable when frozen  [  65  ] . Suggesting a 
possible link between the bystander response and genomic instability effects, it was 
shown that medium harvested over several generations from cells surviving  g -irra-
diation is cytotoxic to nonirradiated bystander cells  [  124,   125  ] . Consistent with 
induction of apoptosis in the unirradiated cells, a rapid calcium  fl ux, a subsequent 
loss of mitochondrial membrane potential and increases in ROS were observed in 
those cells  [  124  ] . 

  Participation of gap - junction intercellular communication (GJIC) : Evidence for the 
involvement of GJIC in propagation of bystander effects has been derived from 
studies with high and low LET radiations  [  53,   56,   75,   85,   126–  131  ] . Gap junctions 
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were shown to mediate the propagation of stressful effects not only between  targeted 
and non-targeted cells (reviewed in  [  10,   70  ] ), but also among the targeted cells  [  27,   132  ] . 
The intercellular channels that comprise gap junctions are formed by   connexin  pro-
teins  [  133  ] . Manipulation (↓↑) of connexin expression/gap-junction gating by 
chemical agents, forced connexin expression by transfection, and connexin gene 
knockout studies provide substantial evidence for the participation of gap junctions 
in radiation-induced bystander effects  [  10,   73,   134  ] . This is supported by stabiliza-
tion and up-regulation of connexin mRNA and protein by ionizing radiation  [  135  ] . 
Disruption of cholesterol rich areas of the plasma membrane, where gap-junction 
channels partition  [  136  ] , attenuated propagation of radiation-induced effects to 
bystander cells  [  137  ] . 

 The participation of gap junctions in stress-induced bystander effects is not unique 
to ionizing radiation; it was also described in high density cells exposed to chemo-
therapeutic agents. Toxicity of these compounds was enhanced by the presence of 
functional gap junctions between the target cells  [  138–  141  ] . These effects bear a 
striking functional similarity to the ability of ganciclovir triphosphate generated by 
herpes simplex virus (HSV) thymidine kinase to pass through gap junctions and kill 
cells uninfected with HSV and therefore insensitive to ganciclovir  [  142–  146  ] . Thus, 
many systems show that gap junctions enhance and spread the effects of toxic agents 
on target cells. It appears that a compound or “stress signal” that leads to toxic/clas-
togenic effects can pass through at least some types of gap-junction channels. This 
can result in stressful effects, including killing of cells adjacent to those exposed to 
the toxic treatment or a synergistic enhancement of toxicity between exposed cells 
(for example, as in the case of cells exposed to hyperthermic treatment  [  147  ] ). 

 Gap junctions are dynamic structures that are critical for diverse physiological 
functions  [  145,   148–  152  ] . By allowing direct intercellular transfer of cytoplasmic 
molecules, they provide a powerful pathway for direct molecular signaling 
between cells. Each of the ~20 forms of connexin  [  153  ]  forms channels with dis-
tinct permeability properties. Though the properties of connexin channels differ, 
their pores are thought to allow permeation by molecules up to ~1,000 Da, well 
above the size of most second messengers  [  133  ] . Our ongoing studies focus on 
the effects of speci fi c connexins in radiation-induced non-targeted effects. 
Connexin channels are highly selective among molecular permeants. The selec-
tivity among cytoplasmic permeants is not simply on the basis of size or charge. 
Although connexin channels are permeable to second messengers  [  133  ] ,  different  
connexins form channels with  different  selectivities for second messengers  [  154–  156  ] . 
For example, ATP, ADP, AMP, glutamate, and glutathione are signi fi cantly more 
permeable through junctional Cx43 than Cx32 channels. On the other hand, ade-
nosine and IP3 are more permeable through Cx32 than through Cx43 channels. 
Depending on their composition, connexin channels can discriminate between 
highly similar second messengers (e.g., cAMP and cGMP, and among inositol 
trisphosphates  [  157–  161  ] ). By understanding the effects of speci fi c connexins in 
the nature of radiation-induced responses, countermeasures to the harmful effects 
of radiation may be formulated and strategies to enhance radiotherapy may be 
developed. 
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  Gap junctions and tumor cells : Loss of GJIC is widely regarded to correlate with 
tumorigenic phenotypes, but there are exceptions. More importantly, it is now clear 
that connexins play distinct roles in speci fi c stages of cancer progression. Speci fi cally, 
increased levels of connexin expression and of GJIC are correlated with invasive-
ness, extravasation, and metastasis in a variety of cancer cells. It has also been noted 
that primary tumors that are initially GJIC impaired become GJIC competent at the 
metastatic stage  [  162,   163  ] . For tumor cells with reduced GJIC, development of 
drugs and methods that can recover or increase GJIC provide a new and potent way 
to enhance treatment. Several compounds, notably 4-phenylbutyrate, an inhibitor of 
histone deacetylases, have been shown to increase GJIC of otherwise GJIC-impaired 
tumor cells, which enhances toxic bystander effects as well as tends to restore 
growth control  [  164–  166  ] . Thus, enhancement of GJIC by chemotherapeutic agents 
in tumor cells, coupled with radiotherapy and the associated transmission of toxic 
compounds between cells in the irradiated tumor, would offer a therapeutic gain. In 
contrast, transmission of toxic effects from irradiated to neighboring normal 
bystander cells would cause a health risk. 

  Oxidative metabolism mediates signaling events leading to radiation - induced 
bystander responses : Normal oxidative metabolism is a key endogenous generator 
of ROS and RNS  [  167  ] , and homeostatic control of normal cellular growth path-
ways is tightly dependent on oxidants  [  168  ] . A disruption of the balance between 
oxidant production and antioxidant defense alters the homeostatic cellular redox 
environment, resulting in a state of oxidative stress that promotes many pathological 
conditions including degenerative diseases and cancer  [  169  ] . The endogenous tar-
gets of oxidants are diverse and include nucleic acids, proteins, and lipids. 

 An indication that ROS are involved in the induction of SCEs in bystander cells 
present in cell cultures exposed to very low  fl uences of  a -particles was suggested 
when the bystander effect was inhibited by SOD, a superoxide radical scavenger  [  107  ] . 
Subsequent studies using more direct approaches have shown that low doses of 
 a -particles initiate the intracellular production of ROS (superoxide anions and 
hydrogen peroxide) in human cells through involvement of the plasma bound 
NADPH-oxidase  [  104  ] . These studies suggested that the ROS response did not 
require direct nuclear or even cellular hits by  a -particles  [  104  ] . In other studies, the 
antioxidant DMSO reduced the lethal effects imparted on bystander cells by 
 3 H-TdR-labeled cells present in the same 3D cell cluster  [  170  ] . Interestingly, maxi-
mum protection of the bystander cells was observed in the presence of both DMSO 
and lindane, an inhibitor of GJIC  [  170  ] . 

 Oxidative metabolism has also been implicated in toxic bystander effects 
observed in media transfer experiments involving  g -radiation  [  171–  173  ] . Treatment 
of the irradiated cultures with the antioxidants  l -lactate and  l -deprenyl  [  171–  173  ]  
or with drugs that inhibit collapse of mitochondrial membrane potential prevented 
the cytotoxic effects from irradiated cell-conditioned medium  [  172  ] . In vivo experi-
ments have also shown that in fl ammatory-type responses occur after exposure to 
ionizing radiation  [  80  ] . In those experiments, activation of macrophages and neutro-
phil in fi ltration were not direct effects of irradiation, but were a consequence of the 
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recognition and clearance of radiation-induced apoptotic cells. The occurrence of 
such response has been suggested to provide a likely mechanism for the interactions 
between irradiated and nonirradiated hemopoietic cells both in vitro and in vivo  [  80  ] . 
Such interaction was also observed in out of  fi eld in vivo experiments  examining the 
genetic effects of partial organ irradiation. Antioxidants and nitric oxide synthase 
inhibitors attenuated these effects  [  174  ] , strongly supporting the role of ROS and 
RNS in mediating bystander effects  [  175,   176  ] . 

 ROS scavengers inhibited the induction of mutations following cytoplasmic irra-
diation  [  102  ] . Further, induction of hypoxanthine guanine phosphoribosyltrans-
ferase ( HPRT ) mutations in CHO bystander cells from cultures exposed to low 
 fl uences of  a -particles was consistent with the involvement of oxidative metabolism 
in the effect. Whereas the mutations induced in cells directly irradiated through the 
nucleus with  a -particles were primarily partial and total gene deletions, over 90% 
of those arising in bystander cells were point mutations  [  177  ] . Interestingly, point 
mutations were mainly generated following cytoplasmic irradiations  [  102  ] . 

 Further evidence that oxidative metabolism is up-regulated in bystander cells 
was generated from gene expression studies in human diploid  fi broblast cultures 
exposed to very low  fl uences of  a -particles  [  74  ] . Whereas p21 Waf1  expression 
 examined in situ in cell cultures exposed to low mean doses of  a -particles occurred 
in clusters of adjacent cells that far exceed the fraction of cells that were irradiated, 
active and not boiled SOD inhibited the effect  [  74  ] . Enzyme activity analyses 
 indicated that the exogenously added SOD enzymatic activity becomes signi fi cantly 
associated with the cells. Whether this association is limited to the plasma mem-
brane or is internalized by the cells remains to be tested. 

 Radiation-induced ROS are known to cause damage to various cellular components 
(reviewed in  [  5,   178  ] ) and produce double-strand breaks in addition to base damage 
and single-strand breaks (reviewed in  [  179–  181  ] ). Alpha-particle-induced meta-
bolic ROS production was also shown to activate signaling pathways mediated by 
p53, MAPK, and PI3K-AKT-GSK3beta in bystander cells  [  74,   120  ] . Active SOD 
and catalase enzymes were capable of suppressing these effects and also inhibited 
the activation in bystander cells of redox-sensitive transcription factors 
(e.g., NF k B, AP-1, and ATF2)  [  74  ] . Similar to GJIC inhibitors, antioxidant enzymes 
signi fi cantly reduced the excess formation of micronuclei in bystander cells  [  74  ] . Of 
interest is the  fi nding that ROS-activated kinase(s) (e.g., member(s) of the MAPK 
superfamily) have a role in activation of gap-junction proteins  [  182  ] . Binding sites 
for the redox-sensitive AP-1 and NF k B transcription factors, which are activated by 
low  fl uences of  a -particles, exist in the connexin43 gene promoter region  [  183  ] . 

 In addition to membrane bound oxidases  [  74,   107  ] , involvement of cell mem-
branes in bystander responses was highlighted by the complete suppression of SCEs 
and  HPRT  mutation induction in CHO cells exposed to low  fl uences of  a -particles 
in the presence of Filipin, a drug that disrupts lipid rafts  [  137  ] . It is of interest to 
note that gap junctions have been reported to partition in lipid rafts  [  136  ] . Further, 
critical molecules that participate in in fl ammatory responses, such as prostaglandin-
endoperoxide synthase 2 ( PTGS2 ), also known as cyclooxygenase-2 (COX-2), also 
localize in cholesterol-rich domains of plasma membrane  [  184  ] . Using a signal 
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transduction pathway-speci fi c SuperArray, we compared differentially expressed 
genes among nonirradiated control NHLF and bystander cells that were in coculture 
with  a -particle-irradiated NHLF  [  112  ] . Among the 96 genes represented on the 
platform, one gene, COX-2, was found to be consistently up-regulated by more than 
threefold, while the RNA level of insulin growth factor binding protein-3 (IGFBP3) 
was found to be consistently lower by more than sevenfold in multiple analyses of 
independent bystander samples. The expression of the COX-2 protein in the nonir-
radiated bystander cells was further con fi rmed by western blotting. Addition of the 
COX-2 inhibitor NS-398 (50  m M) suppressed COX-2 activity in NHLF cells and 
 fi nally, after 24 h, reduced the COX-2 protein level in bystander cells to a non-
detectable level  [  112  ] . These results indicated that expression of COX-2 is associ-
ated with the bystander effect. Subsequent experiments showed that a non-cytotoxic 
and non-mutagenic dose of NS-398 inhibited the propagation of signaling events 
leading to bystander mutagenesis at the HPRT locus in NHLF cell cultures exposed 
to  a -particles. Therefore, it is attractive to speculate that several mechanisms act in 
concert to promote the bystander effect. 

  Involvement of Rad9 in signaling radiation - induced bystander responses : The Rad9 
protein was shown to participate in the bystander response to radiation  exposure 
since mouse embryonic stem (ES) cells null for the corresponding gene demonstrate 
enhanced bystander micronuclei formation and apoptosis relative to wild-type  Rad9  
controls  [  185  ] . These results suggest that Rad9 might normally  suppress the 
bystander signal, and when the protein is not functioning properly a stronger and 
perhaps longer lasting persistent signal is produced postirradiation. Rad9 is a multi-
functional protein with a variety of activities that promote repair of DNA damage, 
including roles in several DNA repair pathways and cell cycle checkpoints  [  186  ] . If 
DNA damage induced by radiation is the initiating event for a bystander response, 
then it is reasonable to speculate that in the absence of Rad9, damage is not properly 
repaired and thus an enhanced bystander response will be in effect. Consistent with 
this model is the previous  fi nding that Chinese hamster ovary cells bearing an xrs-5 
mutation, which reduces the ability to repair DNA double-strand breaks, are sensi-
tized relative to wild-type cells to the formation of chromosome aberrations caused 
by bystander effects induced by a low  fl uence of  a -particles  [  187  ] . However, since 
Rad9 has many functions in addition to DNA repair and cell cycle checkpoint con-
trol, such as the ability to transactivate transcription of speci fi c downstream target 
genes and regulate apoptosis, the contribution of these other activities to the bystander 
response is unknown and thus should also be determined.  

   Conclusions 

 In vitro and in vivo observations have provided strong evidence indicating that 
molecular events leading to various biological effects, including genetic damage, 
can be transmitted from irradiated to nonirradiated cells. The phenomenon occurs in 
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a variety of cell types of human and rodent origin and involves GJIC, oxidative 
metabolism, secreted diffusible factors, and DNA repair (Fig.  4 ). Preliminary 
 evidence points to a crucial role of membrane originating effects where gap  junctions 
and critical enzymes such as COX-2 are located. Further, the expression of con-
nexin proteins has been reported to be modulated by the cellular redox environment 
and by redox-sensitive soluble factors released by cells exposed to ionizing radia-
tion (e.g., TNF- a , IL-1 b )  [  188,   189  ] . However, it is also possible that speci fi c 
bystander effects are regulated by some mechanism(s) and not by others  [  105  ] ; this 
may depend on cell type, cellular growth state, type of radiation, and the biological 
endpoint being measured.  

 While direct approaches were used to investigate the role of GJIC in the radia-
tion-induced bystander effect, this remains to be adopted in studies involving oxi-
dative metabolism. In particular, genomic approaches, by which antioxidant 
enzymes or ROS generating enzymes are overexpressed or underexpressed in cells, 
coupled with coculture experiments will help identify whether cellular redox envi-
ronment contributes to the bystander effect at the level of the irradiated and/or the 
bystander cells. 

 Current evidence indicates that genetic damage occurs in bystander cells; how-
ever, very few studies have examined the reparability of such damage. The fact that 
cells pre-exposed to an adapting  g -ray dose are less susceptible to genetic damage 
induced by bystander mechanisms following exposure to low  fl uences of  a -particles 
 [  190  ] , and the indication that greater bystander damage occurs in repair-de fi cient 
cells  [  191  ]  is in support of the concept that under certain conditions, bystander 
 damage is amenable to repair or is preventable. Studies with rad9 wild type and 
mutant cells support this concept. 

 The radiation-induced lesion(s) that signal expression of the bystander response 
is under intense investigation  [  192,   193  ] : DNA strand breaks, oxidative damage, 
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  Fig. 4    Mechanisms underlying ionizing radiation-induced bystander effects. Signaling molecules 
are propagated among irradiated and bystander cells through direct intercellular communication 
via gap junctions or through diffusible secretion in the surrounding environment. The expression 
of propagation of bystander effects is highly dependent upon the phenotype of both the irradiated 
and bystander cells       
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and other targets have been proposed. Studies that focus on identifying such 
lesion(s) should enhance our understanding of the mechanisms underlying the 
bystander effect.  

   Signi fi cance 

 Radiation protection and radiotherapy are two areas where radiation-induced 
bystander effects could have signi fi cant rami fi cations. 

  Radiation protection : The occurrence of a bystander effect in cell populations 
exposed to low  fl uences of high LET radiation such as  a -particles could have a 
signi fi cant impact on the estimation of risks after such exposure  [  194,   195  ] . It sug-
gests that cell populations or tissues respond as a whole to radiation exposure and 
the response is not restricted to that of the individual traversed cells but involves the 
non-traversed cells also. This would imply that the modeling of dose response rela-
tionships at low mean doses, based on the number of cells hit or even on the type of 
DNA damage they receive, may not be a valid approach. These studies are directly 
relevant to public health issues where humans are exposed to low  fl uences of high 
LET particles. For example, it has been estimated that 10–14% of lung cancer cases 
are linked to radon gas in the environment and its  a -particle-emitting decay prod-
ucts  [  196  ] . These estimates were derived by extrapolation from data for high dose 
exposures to low doses assuming a linear, no threshold dose response. At exposures 
similar to those from indoor radon, most cells in the bronchial epithelium would not 
be traversed by an irradiating particle at all and most of the irradiated cells would be 
traversed by a single particle only  [  197  ] . A cell traversed by one  a -particle receives 
a substantial dose of radiation (~0.1–0.5 Gy) and thus would be prone to the delete-
rious effects of radiation. The studies reviewed here indicate that non-traversed 
bystander cells exhibit similar genetic alterations, including DNA damage, and 
hence could contribute to the risk from such exposure. Thus, bystander effect stud-
ies, along with other approaches (e.g., epidemiological and toxicological) should 
contribute to the establishment of not only adequate environmental radiation protec-
tion guidelines but also occupational radiation protection standards. An increasing 
number of workers are currently deployed to decommission and clean nuclear 
installations, isolate nuclear material, or man space stations. These workers can be 
accidentally exposed to ionizing radiation including low  fl uences of  a -particles and 
high energy heavy ions. 

  Radiotherapeutic gain : The induction of cytotoxic effects in bystander cells adjoin-
ing irradiated cells has the potential to enhance radiotherapy and help achieve tumor 
eradication. Evidence for the existence of radiation-induced bystander effects 
in vivo and elucidation of underlying mechanisms will not only help optimize the 
contribution of bystander effects to radiotherapy but also provide an explanation to 
various reports of cytotoxic effects observed in solid tumors located at distant sites 
from those targeted by radiation. Such abscopal effects, reported as early as 1952 
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(reviewed in  [  69  ] ), led to the regression of a variety of tumors (e.g.,  [  198,   199  ] ). 
Studies have suggested that ionizing radiation induces the release of cytokines into 
the circulation which in turn mediate a systemic antitumor effect  [  199  ] . Such an 
effect may involve enhancement of immune activity  [  200  ] . Interestingly, in vivo 
mouse experiments have shown that the Trp53 protein is a key mediator of the 
radiation-induced abscopal effect  [  201  ] . p53 was previously shown to have a role in 
the secretion of stress-induced growth inhibitors  [  202  ] . The secretion of factors 
capable of inhibitory abscopal/bystander effects when p53 wild-type tumors are 
irradiated would potentiate the effect of radiation in eradicating tumors. 

 Bystander effects are thought to have a role in fractionated radiotherapy  [  203  ] . 
Growth medium harvested from cultured cells receiving fractionated irradiation 
resulted in greater cytotoxic effects when added to bystander nonirradiated cells 
than growth medium harvested from cultures receiving a single dose of irradiation. 
This cell killing effect of conditioned medium from irradiated cultures is contrasted 
with the signi fi cant split dose recovery observed in cultures directly exposed to 
fractionated irradiation  [  203  ] . It was argued that if bystander factors were produced 
in vivo, they may reduce the sparing effect observed in dose fractionation regimens. 
However, the existence of such factors is likely to be patient, tissue, and life-style 
speci fi c  [  204  ] . 

 A direct role for GJIC has been implicated in antitumor suicide gene therapy 
protocols by which apoptotic and/or toxic metabolites are transferred through gap-
junction channels from affected to bystander cells  [  205  ] . Our emerging studies sup-
port the role of GJIC in enhancing cell killing when all cells in the population are 
irradiated  [  27,   132  ] . A limitation to enhancing radiotherapeutic gain by such cohort 
effects is due to the fact that functional GJIC is generally compromised in tumor 
cells. Speci fi c chemical treatments have been proposed to increase the GJIC capac-
ity of tumor cells and cAMP, retinoic acids, carotenoids, glucocorticoids, and 
 fl avenoids have been shown to have such an effect (reviewed in  [  205  ] ). Up-regulation 
of gap-junction communication in tumor cells could contribute to the propagation 
of cell death signals (e.g., calcium ions  [  206  ] ) generated by cells in tumors that 
uptake  a -particle emitters. These radionuclides are being investigated in the treat-
ment of cancer  [  207–  209  ] . 

  Emergence of second primary cancers following radiotherapy : Since genomic 
instability is considered a predisposition factor for carcinogenesis, it has been pos-
tulated that radiation-induced non-targeted/bystander effects may promote second-
ary cancer induction in radiotherapy patients  [  210  ] . From animal studies with 
X-rays, there is evidence that irradiation of part of the lung in mice can induce a 
non-targeted response in the nonirradiated part of the lung through the induction of 
in fl ammatory cytokines  [  211  ] . Furthermore, our recent evidence (unpublished) and 
that of others  [  212  ]  indicates that irradiation of the lower abdomen of mice with 
X-rays results in the induction of in fl ammatory response as well as mutations and 
COX-2 induction  [  213  ]  in out of  fi eld lung tissues. Using the radiosensitive 
Patched-1 + / −  (Ptch1 + / − ) mouse model system that has a defect in radiation-induced 
activation of the ATR-Chk1 checkpoint signaling pathway, Mancuso et al. reported 
induction of medulloblastoma in the nonirradiated brain tissues after partial irradiation 
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of the lower half of the animal with a 3 Gy dose of X-rays  [  85  ] . Further, based on 
human serum analyses, there is clear evidence that plasma clastogenic factors are 
present many years after radiation exposure from the Japanese atomic bomb survi-
vors, Chernobyl liquidators, and from radiotherapy patients  [  91,   214,   215  ] . Recently, 
the frequency distribution of second primary tumor sites in relation to previous 
irradiation volumes was estimated in a cohort of 115 pediatric patients who 
 developed such cancers  [  216  ] . It was estimated that ~22% of secondarily derived 
tumors arise from a distance of at least 5 cm from the irradiated site and ~6% arise 
from a distance that is >10 cm away. A peak second primary tumor frequency of 
~31% was identi fi ed in volumes receiving less than 2.5 Gy and a total of 10–15% of 
these tumors are estimated to arise in tissues receiving less than 0.5 Gy. Although 
these  fi ndings are suggestive, nonetheless, the data highlight the potential of second 
tumor development outside the treatment  fi eld and at much lower dose level. 

 In summary, bystander effect studies have led to a paradigm shift in our under-
standing of the target theory. They are enhancing our general understanding of inter-
cellular communication under stress conditions. The outcome may contribute to 
both radiation protection and radiotherapy.      
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