47 research outputs found

    Evaluating the outcomes of collaborative wildlife governance: The role of social-ecological system context and collaboration dynamics

    Get PDF
    The acknowledgement of uncertainty and complexity in social-ecological systems has increased the implementation of collaborative governance regimes for environmental issues. The performance of these new regimes to deliver favourable social and ecological outcomes must therefore be evaluated. We focus on the case of Swedish wildlife governance, which has a tradition of using collaborative elements. In relation to moose (Alces alces), these collaborative aspects were recently formalized in an amended policy. We aim to assess some aspects of this new regime's performance with respect to intermediate ecological outcomes (i.e. quota fulfilment). We use path analysis to test the causal effects of system context and collaboration dynamics on governance outcomes. Collaboration dynamics were assessed using a web-based survey sent to all stakeholders in Moose Management Groups (response rate = 82 %). Our originally specified model yielded a good fit (SRMR of .030 and robust TLI of .996) and explained 20 % of the variation in outcomes. Context variables revealed significant direct effects on collaboration dynamics and outcomes. Larger Moose Management Areas and fluctuations in forage availability required more time investment from actors, while high land use diversity and density of other ungulate species negatively affected moose quota fulfilment. Moose Management Groups that invested more time and perceived to have a good knowledge base achieved better quota fulfilment. Collaboration dynamics thus had a positive direct effect on outcomes. From a policy perspective, our results raise questions regarding institutional fit because context factors had significant negative effects on collaboration dynamics and the outcomes of the collaborative process

    Evaluation of the anti-inflammatory effects of synthesised tanshinone I and isotanshinone I analogues in zebrafish

    Get PDF
    During inflammation, dysregulated neutrophil behaviour can play a major role in a range of chronic inflammatory diseases, for many of which current treatments are generally ineffective. Recently, specific naturally occurring tanshinones have shown promising anti-inflammatory effects by targeting neutrophils in vivo, yet such tanshinones, and moreover, their isomeric isotanshinone counterparts, are still a largely underexplored class of compounds, both in terms of synthesis and biological effects. To explore the anti-inflammatory effects of isotanshinones, and the tanshinones more generally, a series of substituted tanshinone and isotanshinone analogues was synthesised, alongside other structurally similar molecules. Evaluation of these using a transgenic zebrafish model of neutrophilic inflammation revealed differential anti-inflammatory profiles in vivo, with a number of compounds exhibiting promising effects. Several compounds reduce initial neutrophil recruitment and/or promote resolution of neutrophilic inflammation, of which two also result in increased apoptosis of human neutrophils. In particular, the methoxy-substituted tanshinone 39 specifically accelerates resolution of inflammation without affecting the recruitment of neutrophils to inflammatory sites, making this a particularly attractive candidate for potential pro-resolution therapeutics, as well as a possible lead for future development of functionalised tanshinones as molecular tools and/or chemical probes. The structurally related ÎČ-lapachones promote neutrophil recruitment but do not affect resolution. We also observed notable differences in toxicity profiles between compound classes. Overall, we provide new insights into the in vivo anti-inflammatory activities of several novel tanshinones, isotanshinones, and structurally related compounds

    Chronic kidney disease and coenzyme Q10 supplementation

    Get PDF
    Among the potential causes of chronic kidney disease (CKD), mitochondrial respiratory chain (MRC) dysfunction, oxidative stress and inflammation have been implicated as contributor factors to the pathogenesis of this disorder. It is thought that CoQ10 supplementation may offer some therapeutic potential in the treatment of patients with CKD, since CoQ10 has a key role in normal MRC function, as well as having antioxidant and anti-inflammatory action. This article will outline the current knowledge on the use of CoQ10 in the treatment of CK

    Pelleting torrefied biomass at pilot-scale – Quality and implications for co-firing

    No full text
    The co-firing of solid biofuels in coal plants is an attractive and fast-track means of cutting emissions but its potential is linked to biomass densification. For torrefied materials this topic is under-represented in literature. This pilot-scale (121–203 kg h−1) pelleting study generated detailed knowledge on the densification of torrefied biomass compared to untreated biomass. Four feedstock with high supply availability (beech, poplar, wheat straw and corn cob) were studied in their untreated and torrefied forms. Systematic methods were used to produce 180 batches of 8 mm dia. pellets using press channel length (PCL) and moisture content (MC) ranges of 30–60 mm and 7.3–16.6% (wet basis) respectively. Analysis showed that moderate degrees of torrefaction (250–280 °C, 20–75 min) strongly affected pelleting behaviour. The highest quality black pellets had a mechanical durability and bulk density range of 87.5–98.7% and 662–697 kg m−3 respectively. Pelleting energy using torrefied feedstock varied from −15 to +53 kWh t−1 from untreated with increases in production fines. Optimal pelleting MC and PCL were reduced significantly for torrefied feedstock and pellet quality was characterised by a decrease in mechanical durability and an increase in bulk density. Energy densities of 11.9–13.2 GJ m−3 (as received) were obtained

    Control of the oceanic heat content of the Getz‐Dotson Trough, Antarctica, by the Amundsen Sea Low

    Get PDF
    The changing supply of warm Circumpolar Deep Water (CDW) to the West Antarctic continental shelf is responsible for the basal melting and thinning of the West Antarctic ice shelves that has occurred in recent decades. Here we assess the variability in CDW supply, and its drivers, from a multiyear mooring deployed in, and a regional ocean model spanning, the Getz-Dotson Trough, Amundsen Sea. Between 2010 to 2015, the CDW within the trough underwent a pronounced cooling and freshening, associated with changes in thermohaline properties on isopycnals. Variability in the rate of CDW inflow is controlled by local wind forcing of a shelf break undercurrent, which determines the hydrographic properties of inflowing CDW via tilting of density surfaces above the continental slope. Local wind is coupled to the Amundsen Sea Low (ASL) low-pressure system, which is modulated by large-scale climatic modes via atmospheric teleconnections. For the period analyzed, a deeper ASL was associated with westward wind anomaly at the shelf break. Changes in the sea surface slope decelerated the shelf break undercurrent, resulting in less heat accessing the continental shelf and, consequently, a cooling of the Getz-Dotson Trough. Therefore, the present work suggests that the fate of the West Antarctic ice shelves is closely tied to the future evolution of the ASL
    corecore