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Abtsract  

Amongst the potential causes of chronic kidney disease (CKD), mitochondrial 
respiratory chain (MRC) dysfunction, oxidative stress and inflammation have 

beenimplicated as contributor factors to the pathogenesis of this broad ranging 
disorder. In view of the reported ability of coenzyme Q10 (CoQ10) to restore 

electron flow in the MRC, as well as to increase cellular antioxidant capacity 
and mediate inflammation, CoQ10 supplementation may offer some 

therapeutic potential in the treatment of patients with CKD, in which evidence 
of oxidative stress/inflammation and/or MRC dysfunction have been identified.  

The following review will outline our current knowledge on the use of CoQ10 in 
the treatment of CKD, as well as discussing the involvement MRC dysfunction,    

oxidative stress and inflammation in this disorder. 
 

 

Introduction 
CKD isdefined as a permanent loss of kidney function, characterised by a 

reduced ability of the kidneys to excrete waste products of metabolism, 
resulting in the build-up of uremic toxins in the blood (Barret et al., 2014). CKD 

is classified into five stages, depending on the glomerular filtration rate (GFR); 
this is the rate of filtration across the glomerular filtration barrier, measured in 

units of ml/min/1.73m2, with normal values typically in the range 90-120. 
Patients with severe CKD (stage 5) are typically treated by dialysis to remove 

uremic toxins, correct electrolyte and acid base imbalance and, in patients with 
reduce urine output, regulate body water (Dhondup and Qian, 2011). It is 

estimated that the prevalence of CKD in the general UK population is 
approximately 10% (Public Health England, 2014). There are a number of 

causes of CKD, with hypertension and diabetes being amongst the most 
prominent (Romagnani et al., 2017).  

 

CoQ10 is a lipophilic molecule  consisting of a benzoquinone nucleus and an 
isoprenoid side chain [Figure 1] that plays a key role in cellular energy 

generation within the mitochondrial respiratory chain (MRC) [Figure 2], as well 
as having an important antioxidant and anti-inflammatory action (Fan et al. 

2017). CoQ10 occurs within the body in two very closely related chemical 
forms, an oxidised form (ubiquinone) [Figure 1a] and a reduced form 

(ubiquinol) [Figure 1b]. The chemical structure of CoQ10 is relatively complex, 
and ubiquinol differs from ubiquinone only by the addition of an extra two 

hydrogen atoms. The antioxidant activity of CoQ10 is provided by ubiquinol 
(Hargreaves, 2015).   The reductive regeneration of ubiquinol is vital to 

maintain its antioxidant function. The MRC ensures that the inner 
mitochondrial membrane CoQ10 pool is kept in its fully reduced ubiquinol state 

(Aberg et al. 1992). The enzyme, electron transfer flavoprotein-ubiquinone 
oxidoreductase (ETFDH) also contributes to the reduction of the CoQ10 pool 

within the inner mitochondrial membrane (Gempel et al. 2007). CoQ10 is 

reduced to ubiquinol on the outer surface of the inner mitochondrial membrane 
by the enzyme, dihydroorotate dehydrogenase during pyrimidine synthesis 

(Turunen et al. 2004). In the plasma and endomembranes (membranes of the 



different organelles within the cytoplasm of the cell) there are at least four 

enzymes that are known to maintain CoQ10 in its ubiquinol form. These 
enzymes are NADH cytochrome b5 reductase, NADH/NADPH oxidoreductase, 

NADPH coenzyme Q reductase (NQO1) and dihydro-orotate dehydrogenase 
(NQO1;Villalba & Navas 2000; Takahashi et al. 1996). 

 In addition to their antioxidant potential however, the therapeutic efficacy of 
CoQ10 and its synthetic analogues such idebenone in the treatment of MRC 

disorders is also thought to rely on their ability to enhance electron flow in the 
MRC (Hargreaves, 2014; Neergheen et al., 2017). 

  
Mitochondrial dysfunction in CKD 

 The waste products of metabolism, uremic toxins are normally excreted in the 
urine, but can accumulate as a result of CKD and have been reported to cause 

impairment of MRC function (Mutsaers et al., 2013; Granata et al., 2015)  
[Figure 2]. This can result from inhibition of MRC complex II (succinate: 

ubiquinol reductase) and/or complex IV (cytochrome c oxidase) activities 

(Granata et al., 2009; Granata et al., 2015). Furthermore, in vitro studies have 
indicated that the CKD reported in patients with primary hyperaldosteronism 

may result from aldosterone induced mitochondrial dysfunction in the 
podocytes. The mitochondrial dysfunction appears to result from an 

aldosterone induced decrease in mitochondrial DNA (mtDNA) copy number as a 
consequence of increased mitochondrial reactive oxygen species (ROS) 

generation (Su et al., 2013).  
 

Interestingly, a decrease in mtDNA has also been reported in Finnish type 
congenital nephrotic syndrome (Solin et al. 2000).  Once impaired, the MRC 

becomes a major source of ROS which can result in oxidative stress, once 
cellular antioxidant defences have been overwhelmed (Stepien et al., 2017), 

and has been reported in animal models of CKD (Owada et al., 2010). The 
major sites of ROS generation within the MRC are at complex I and III 

(Quinlan et al. 2013). Oxidative stress can also result in inflammation which 

can mediate a host of chronic diseases (Stepien et al., 2017; refs: DelaCruz & 
Kang, 2018; Grazioli & Pugia, 2018; Meyer et al, 2018). In addition, the levels 

of a number of pro-inflammatory cytokines considered to be uremic toxins 
increase in CKD, contributing to the pathophysiology of this condition (Castillo-

Rodriguez et al., 2017).The release of mitochondria-derived damage-
associated molecular patterns (DAMPs) as the result of mitochondrial 

dysfunction. may also contribute to the inflammatory response by interacting 
with receptors similar to those involved in the pathogen-associated immune 

response (Picca et al., 2017). Furthermore, an study in a mouse model of 
Parkinson`s disease has indicated that mitochondrial dysfunction is able to 

multiply the inflammasome signalling pathway-driven proinflammatory cascade 
in microglia (Sarkar et al., 2017). Moreover, inflammation has also been 

associated with the inhibition of MRC enzyme activity as illustrated in the 
autoimmune inflammatory disorder, multiple sclerosis (Hargreaves et al. 2018) 

as well as the systemic inflammatory response syndrome, Sepsis (Stepien et 

al., 2017). MRC dysfunction, oxidative stress and inflammation can interact in 
a mutually reinforcing manner, with deleterious effects on the functioning of all 

tissues, but particularly those with high energy demands such as the heart and 



kidneys. 

 
Therefore, in view of the association between CKD, MRC dysfunction, oxidative 

stress and inflammation, it is the purpose of this article to discuss evidence for 
the potential role of CoQ10 in the treatment of patients with CKD. 

 
CoQ10 

CoQ10 plays a key role in the biochemical process that supplies all cells with 
the energy required for their normal functioning.  Specifically, CoQ10 serves an 

electron carrier in the MRC transferring electrons derived from complex I 
(NADH:ubiquinone reductase) and complex II  to complex III allowing a 

continuous passage of electrons within the chain which is required for the 
process of oxidative phosphorylation and consequent ATP production 

(Hargreaves, 2003) [Figure 2].  In its reduced ubiquinol form, CoQ10 also 
functions as a potent lipid soluble antioxidant which is considered more 

efficient than vitamin E (Frei et al. 1990). It has been suggested that ubiquinol 

acts earlier in the prevention of lipid peroxidation than vitamin E (Ernster & 
Forsmark-Andree 1993) and is also able to regenerate  the active -tocopherol 

form of the vitamin from the -tocopheroxyl radical. Ubiquinol is able to inhibit 

lipid peroxidation (Ernster et al. 1992; Ernster & Dallner 1995) and is present 

in the membranes of all other subcellular organelles, such as microsomes, 
lysosomes and the Golgi apparatus (Crane, 2001;Turunen et al., 2004; Littarru 

et al. 2007). In the plasma membrane, ubiquinol can prevent lipid peroxidation 
by itself or by reducing the antioxidants, -tocopherol and vitamin C (Navas et 

al. 2007). Ubiquinol also plays an important role as an antioxidant protecting 
circulatory lipoproteins from free radical induced oxidative damage (Romagnoli 

et al. 1994; Alleva et al. 1995).  It is important to stress that ROS  can serve 
as a r signalling molecule regulating important biological and physiological 

functions within the cell (Finkel, 2011).However, excessive production of ROS 
will overwhelm  the intracellular antioxidant defenses causing oxidative 

damage to lipids, proteins and DNA (Cross et al., 1987; Matsuzaki et al, 2009). 
In addition, gene expression profiling has shown that CoQ10 influences the 

expression of several hundred genes (Guttierez-Mariscal et al, 2018). In 

particular, studies in cell culture, animal models and human subjects have 
shown that CoQ10 can directly regulate gene expression relevant to 

inflammation and fat metabolism (Schmelzer et al 2008). At least 13 genes are 
involved in the biosynthesis of CoQ10 itself, and mutations 10 of these genes 

have been reported to result in primary CoQ10 deficiency (Awad et al. 
2018;Yubero et al. 2018). 

An adequate supply of CoQ10 is essential for the normal functioning of 
mitochondria. Most of the daily CoQ10 requirement is synthesized within the 

body, with a small amount being obtained from dietary sources (Weber et al., 
1997). CoQ10 biosynthesis is a multistage process with the benzoquinone 

nucleus being derived from tyrosine and the isoprenoid side chain being 
derived from acetyl-CoA via the mevalonate pathway (Turunen et al. 2004). 

Following the condensation of the side chain and benzoquinone nucleus, the 
final modification of the benzoquinone nucleus to form CoQ10 occurs within the 

mitochondria (Turunen et al. 2004; Navas et al. 2007).  CoQ10 is present 

within all cellular membranes including the plasma membrane, however it 



found in the highest amounts within the outer and inner membranes of the 

mitochondria, lysosomes and Golgi body where it serves as a respiratory chain 
redox carrier, proton transporter and antioxidant. (Turunen et al. 2004).  As 

people age, the body becomes less efficient at producing its own supply of 
CoQ10 (Navas et al. 2007); with levels in cardiac tissue at age 65 being less 

than 50% of those at age 25, this is why people may choose to take 
supplemental CoQ10 to correct this potential deficit (Kalen et al., 1989). An 

important factor to consider which may influence the efficacy of CoQ10 
supplementation is the type of CoQ10 formulation employed, as this will 

influence the bioavailability of CoQ10 absorbed from the digestive tract into the 
bloodstream. When supplemental CoQ10 is first produced (via a yeast 

fermentation process), it is obtained in the form of crystals which cannot be 
absorbed from the digestive tract (Mantle, 2015). It is essential that these 

crystals are dispersed into single CoQ10 molecules (and remain dispersed 
during the product shelf-life) for optimum bioavailability, but manufacturers 

vary greatly in their ability to achieve this goal. In view of their superior 

absorption, the use of gel and oil based formulations of CoQ10 have been 
recommended in preference to tablets in the treatment of patients with 

mitochondrial disease (Weis et al., 1994) . Recently, a study by Martinefski et 
al (2017) reported that soft gel formulations improved the bioavailability of 

CoQ10 with respect to solid formulations. 

At present, there is considerable debate on whether formulations of ubiquinol, 

CoQ10 in its fully reduced form (Hargreaves, 2003), have a better absorption 
from the GI tract than those of CoQ10.  It is reported that the absorption of 

ubiquinol by the gastrointestinal tract is 3-4 times greater than that of CoQ102 

Bhagavan and Chopra, 2007; Garcia-Corzo et al., 2014). However, upon 

absorption from the GI tract, CoQ10 undergoes reduction to ubiquinol, 
therefore, the reported superior bioavailability of ubiquinol formulations to that 

of CoQ10 may be attributable to the matrix in which the ubiquinol is 
encapsulated. Furthermore, at present there is limited data available from 

clinical studies, and there are no indications of dosage compatibility Desbats et 

al., 2015). 
 

CoQ10 and kidney function in CKD 
Plasma CoQ10 levels have been reported to be significantly lower in CKD 

patients (with or without haemodialysis), compared to normal controls (Triolo 
et al., 1994; Macunluoglu et al., 2014; Yeung et al., 2015). The cause of this 

deficit in serum CoQ10 levels is as yet uncertain, however, it may be 
associated with the increased oxidative stress reported in CKD (Oberg.et al., 

2004). The oxidative stress in CKD as a result of either MRC dysfunction or 
from other sources (Galli et al., 2001) may cause an increased degradation of 

CoQ10 (Miranda et al., 1999). Furthermore, it has been suggested that the 
enzymes involved in CoQ10 biosynthesis may exist in a super enzyme complex 

which is located in mitochondria in close proximity to MRC in the inner 
mitochondrial membrane (Marbois et al. 2005; Ashraf et al.2013) A deficiency 

in MRC enzyme activity may therefore impact upon the structural formation or 

function of the CoQ10 super enzyme complex possibly as the result of 
increased ROS generation which has been associated with MRC enzyme 

dysfunction (Quinlan et al. 2013) causing oxidative stress induced impairment 



of CoQ10 biosynthetic enzymes, which may therefore compromise CoQ10 

biosynthesis (Yubero et al., 2016). 
 

There is some evidence that CoQ10 supplementation may improve renal 
function and reduce the need for dialysis in patients with CKD. In a randomised 

controlled study (Singh et al., 2000) 97 CKD patients were given 
supplementary CoQ10 (3 x 100mg daily for 3 months) or placebo. There was a 

significant improvement in markers of renal function (e.g. serum creatinine) in 
CoQ10 supplemented patients compared to placebo, in both dialysed and non-

dialysed patients. In particular, the number of patients requiring dialysis in the 
CoQ10 treated group decreased from 21 to 12, whilst remaining unchanged at 

24 in the placebo group. In an animal model of CKD, the reduced form of 
CoQ10, ubiquinol, was found to decrease kidney superoxide levels as well 

ameliorating renal dysfunction (Ishikawa et al., 2015). 
 

Decreased CoQ10 levels may be a particular issue in CKD patients prescribed   

the cholesterol-lowering drugs `statins,` since some studies have reported a 
deficit in CoQ10 status in association with this pharmacotherapy in a subset of 

patients. It has been suggested that these patients may have some form of 
underlying mitochondrial disease and therefore may be more susceptible to the 

adverse effects of statin therapy (Hargreaves et al., 2016). Statins are potent 
inhibitors of  3-hydroxy-3-methylglutaryl coenzyme A (HMGCoA) reductase, 

the rate limiting enzyme in cholesterol biosynthesis. Statins  can also inhibit 
the body's production of coenzyme Q10 (CoQ10), which is synthesised via the 

same biochemical pathway as cholesterol. The statin induced reduction in 
CoQ10 levels has been well documented in both animal model and clinical 

studies. Adverse effects in some patients (particularly muscle pain) resulting 
from statin use has been rationalised in terms of CoQ10 depletion; 

supplementation with CoQ10 is effective in ameliorating statin-induced muscle 
pain (Skarlovnik et al. 2014; Littlefield et al, 2014.  Qu et al. 2018) 

 

CoQ10, oxidative stress and haemodialysis 
Although haemodialysis is essential for removing uremic toxins, it is a 

consequence of the procedure that individuals are subject to additional 
oxidative stress (a result of neutrophil exposure to the synthetic material 

comprising the dialyser membrane), in addition to the oxidative stress 
associated with CKD. A number of clinical studies have reported that 

supplementation with CoQ10 significantly improves outcome in haemodialysis 
patients by reducing markers of oxidative stress and inflammation. In a 

randomised controlled trial, Zahed et al (Zahed et al., 2016) reported that 
CoQ10 supplementation (100mg/day for 3 months) in end stage CKD patients 

undergoing haemodialysis significantly reduced serum levels of the 
inflammatory marker C-reactive protein. An open label dose escalation study 

by Yeung et al (2015) showed supplementation with CoQ10 over the range 
300-1800mg/day for 14 days to be safe and well tolerated, significantly 

reducing plasma levels of the oxidative stress marker isofuran. It was 

suggested by Yeung et al (2015) that the decrease in oxidative stress observed 
in patients following CoQ10 treatment may have resulted from the ability of 

this molecule to improve mitochondrial function rather than as a consequence 



of any systemic antioxidant effect.  

 
 

CoQ10 and cardiovascular disease in CKD patients 
Patients with CKD are at high risk of developing cardiovascular disease, with a 

10-20 fold increased risk of cardiovascular mortality compared to non-CKD 
individuals. In particular, there is a high prevalence of atrial fibrillation in CKD 

patients (Huang et al., 2016). Overall, approximately 50% of deaths in CKD 
patients result from cardiovascular disease, rather than as a direct 

consequence of kidney failure. Conversely, cardiovascular disease can cause 
CKD leading to a vicious circle in which each disorder exacerbates the other. 

Thus, treatment of CKD can reduce the incidence of cardiovascular disease, 
and treatment of cardiovascular disease can reduce further deterioration in 

renal function. In this regard, a randomised controlled clinical trial (Q-SYMBIO) 
of patients with chronic heart failure (in whom CoQ10 levels are depleted), 

supplementation with CoQ10 (Bio-Quinone Q10 Gold 200mg/day for 2 years) 

reduced the risk of cardiovascular related mortality by 43% (Mortensen et al., 
2014). Similarly, the KISEL-10 study was a randomised controlled clinical trial, 

involving long term (5 year) supplementation of a normal elderly population 
with coenzyme Q10 (Bio-Quinone 100mg/day) and selenium (SelenoPrecise, 

200mcg/day). Cardiovascular mortality was significantly reduced in 
supplemented individuals by 53%; in addition, biochemical markers of 

systemic oxidative stress and inflammation were significantly reduced, and 
heart function, hospitalisation frequency and quality of life significantly 

improved (Alehagen et al. 2013; Alehagen et al. Alehagen et al. 2015a; 
Alehagen et al. 2015b; Johansson et al. 2015). 

A randomised controlled trial in haemodialysis patients reported that 
supplementation with CoQ10 (1200mg/day for 4 months) resulted in a 

significant decrease in the level of plasma F2-isoprostanes, a bio-marker of 
oxidative stress (Rivara et al, 2017). To date no randomised controlled trials 

have been carried out to determine clinical outcome for reducing 

cardiovascular risk in CKD patients. 
 

 
The ratio of plasma CoQ10 vs LDL cholesterol+ VLDL cholesterol, considered to 

be more important in athersclerosis prevention than the ratio of HDL:LDL 
cholesterol (Tomasetti et al.,1999)was significantly lower in CKD patients (with 

or without dialysis) compared to controls. 
 

Epicardial fat thickness, a new risk factor for cardiovascular disease, was found 
to be significantly greater in CKD patients undergoing haemodialysis compared 

to controls and correlated with reduced plasma CoQ10 levels (Lippa et al., 
2000). Similarly, coronary flow reserve, an indicator of atherosclerosis, was 

reported to be significantly lower in haemodialysis patients, correlating 
inversely with serum CoQ10 levels (Macunluoglu et al., 2013). 

 

CKD and MRC disorders 
CKD can also be a clinical presentation of primary MRC disorders which can 

result in either tubular defects and/or glomerulopathies, the latter being the 



more common clinical presentation (Emma et al., 2016). In view of the high 

metabolic demand of renal tubular cells they are very susceptible to deficits in 
mitochondrial energy metabolism and, consequently, renal tubular defects are 

frequently reported in patients with MRC disorders (Emma and Salviati, 2017). 
Amongst the tubular disorders, Fanconi Syndrome, which is a disorder of 

inadequate reabsorption in the proximal renal tubules of the kidney has often 
been reported as one of the clinical presentations from a variety of 

mitochondrial diseases (Emma and Salviati, 2017). 
 

In addition to renal tubular disorders, glomerulopathies have also been 

reported amongst the clinical sequelae of patients presenting with the 
mitochondrial disease. Although renal involvement is rare in patients with 

MELAS (mitochondrial encephalopathy lactic acidosis and stroke like episodes), 
patients harbouring the 3243 A>G mtDNA point mutation have been reported 

to present with renal disease as the result of glomerular dysfunction (Hall et 
al., 2015). Although no assessment of the CoQ10 status of MELAS patients was 

undertaken in the study by Hall et al (2015), previous studies have reported 

evidence of a deficit in CoQ10 status in patients with various mtDNA disorders 
(Hargreaves et al., 2014). Prompt diagnosis of a deficit in CoQ10 status is 

imperative, since a dramatic improvement in the clinical status of such patients 
has been reported following CoQ10 supplementation (Montini et al., 2015). 

 
Inherited defects in CoQ10 biosynthesis have also been associated with 

glomerular disease with the urinary space occupied by swollen podocytes with 
extensive foot process fusion and containing high numbers of dysmorphic 

mitochondria (Emma and Salviati. 2017). Defects in CoQ10 metabolism appear 
to specifically impair podocyte function and should be considered amongst the 

other causes of a podocytopathy (Singh et al. 2015). At present it is uncertain 
why podocyte function is so sensitive to a deficit in CoQ10 status. However, in 

view of their dependence on oxidative phosphorylation for energy generation 
together with high mitochondrial enrichment, a deficit in CoQ10 status would 

be effected to impair MRC function as well as compromising cellular antioxidant 

status (Hargreaves, 2003). 
 

In humans, at least 13 genes are thought to be involved in the biosynthesis of 

CoQ10, and mutations in 10 of these genes have been identified to date 

(Doimo et al. 2014; Awad et al. 2018; Yubero et al. 2018). Renal dysfunction 

in association with CoQ10 deficiency was first reported by Rotig et al (2000) in 
three siblings with severe encephalomyopathy and steroid resistant nephrotic 

syndrome.  A further two siblings with steroid resistant nephrotic syndrome 
and CoQ10 deficiency were reported (Salviati et sl., 2005). Subsequent 

investigations identified mutations in the COQ2 gene (which encodes 4-
hydroxybenzoate polyprenyl transferase) of these two siblings making them 

the first patients with a primary CoQ10 deficiency to achieve a genetic 
diagnosis (Quinzii et al.,2006). 
 

, mutations in PDSSI, PDSS2, CoQ6 and ADCK 44 genes have been associated 
with steroid resistant nephrotic syndrome and CoQ10 deficiency (Emma and 

Salviati, 2017). However, in contrast to the other mutations which present with 

both neurological and renal dysfunction, steroid resistant nephrotic syndrome 



appears to be the sole clinical presentation of patients with mutations in ADCK 

44 gene. The ADCK 44 gene encodes for a putative kinase which is thought to 
have a regulatory function within the CoQ10 biosynthetic pathway, possibly by 

interaction with the enzymes of the CoQ10 super-complex (Ashraf et al., 
2013). 

 
Patients who develop steroid resistant nephrotic syndrome as a result of a 

CoQ10 deficiency appear to respond well to high dose CoQ10 supplementation 
if treatment is initiated early in the diseases course with progressive recovery 

of renal function and decreased proteinuria being reported Diomedi-Cammassei 
et al., 2007; Heeringa et al., 2011; Cao et al., 2017). Unfortunately, CoQ10 

supplementation was reported to be unsuccessful in inducing recovery of renal 
function once chronic renal failure had developed (Montini et al., 2008) 

Supplementation with CoQ10 at doses of 30-50 mg/kg/day have been 
recommended (Emma and Salviati, 2017). However, at present there is no  

consensus on the appropriate dosage that should be used to treat these 

disorders. In order to exploit the `window of opportunity` whereby organ 
dysfunction may be amenable to CoQ10 treatment, supplementation at birth 

has been recommended for siblings of patients with confirmed CoQ10 
deficiencies (Desbats et al., 2015). 

 
Clinical monitoring of CoQ10 status 

Clinical monitoring of CoQ10 status is generally based on plasma 
determinations, however the level of circulatory CoQ10 is influenced by both 

diet and circulatory lipoprotein status (Yubero et al., 2014). There is 
uncertainty if plasma CoQ10 status reflects that of other tissues and is an 

appropriate surrogate for use in this assessment (Yubero et al., 2014). Skeletal 
muscle is the tissue of choice for this determination, however in view of the 

possibility that there may be tissue specific isoenzymes in the CoQ10 
biosynthetic pathway or that a CoQ10 deficiency may be localised to a single 

organ, other surrogates may be more appropriate to assess renal CoQ10 status 

(Yubero et al., 2014).  At present, there are no studies that have assessed the 
CoQ10 status of normal human renal tissue due to the invasive nature of a 

kidney biopsy. However urinary tract CoQ10 analysis could be an appropriate 
approach for assessing kidney CoQ10 status, and may help fulfill the critical 

need for less invasive procedures to determine tissue CoQ10 status. Recently, 
a new methodology for the measurement of CoQ10 in urine has been 

standardized, including the establishment of reference values for a paediatric 
control population (Yubero et al., 2015). This new evaluation of urinary tract 

CoQ10 is a non-invasive procedure that might be useful for estimating CoQ10 
kidney status for diagnosis and especially for CoQ10 treatment monitoring. 
 

 

Conclusion 

 

In conclusion, we have reviewed published literature providing a rationale for 

the role of CoQ10 in the pathogenesis of CKD. Several clinical studies (both 
randomised controlled and open) have been identified that indicated oral 

supplementation with CoQ10 in CKD patients could improve kidney function in 

both non-dialysed and dialysed patients. Similarly, clinical studies have 



demonstrated that oral supplementation with CoQ10 is effective, when 

administered sufficiently early, in preventing renal dysfunction manifesting in 
patients with genetically related primary CoQ10 deficiency. In addition to its 

role in renal function, it has been suggested that supplementation with COQ10 
may be effective in reducing the risk of developing cardiovascular disease in 

CKD patients. However, to date, no randomised controlled trials have been 
carried out to investigate the efficacy of CoQ10 supplementation on clinical 

outcome for cardiovascular disease in CKD patients, and this is a promising 
area for future research. 
 

 

 
Summary: key points 

 
1. Mitochondrial dysfunction, oxidative stress and inflammation have been 

implicated in the pathogenesis of CKD. 
 

2. Depletion of CoQ10 levels, which has an important role in mitochondrial 

cellular energy generation and as an antioxidant/anti-inflammatory, has been 
demonstrated in CKD patients. 

 
3. Depletion of CoQ10 in CKD can result primarily from genetic defects in the 

CoQ10 biosynthesis pathway, or secondarily from oxidative stress linked to the 
CKD disease process (e.g. uremic toxin accumulation) and/or haemodialysis. 

 
4. Randomised controlled clinical trials have shown oral supplementation with 

CoQ10 can improve renal function and reduce the need for dialysis in CKD 
patients, or improve the clinical status in patients undergoing dialysis. 

 
5. Supplementation of CoQ10 at an early stage is of particular importance in 

kidney disease linked to genetic mutations in the biosynthetic pathway, since 
patients may show a dramatic clinical improvement if CoQ10 deficiency is 

corrected as soon as practicable. 
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Figure 1. Diagram of the mitochondrial respiratory chain (MRC) and       

complex V illustrating proton (H+) movement during oxidative    
phosphorylation. Q: Coenzyme Q

1 
and Cyt C: Cytochrome c 

Figure 2: Figure 1: Structures of Coenzyme Q
10

 (CoQ
10; 

A) and ubiquinol (B). 

 

 

 
 

 
 

 
 

 
 

 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 
 

 
 

 
 

 
 

 



 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

 
 

 

 

 

 

 

 
 

 
 

 
 

 
 

 
 

 
 


