33 research outputs found

    Evolutionary loss of thermal acclimation accompanied by periodic monocarpic mass flowering in Strobilanthes flexicaulis

    Get PDF
    While life history, physiology and molecular phylogeny in plants have been widely studied, understanding how physiology changes with the evolution of life history change remains largely unknown. In two closely related understory Strobilanthes plants, the molecular phylogeny has previously shown that the monocarpic 6-year masting S. flexicaulis have evolved from a polycarpic perennial, represented by the basal clade S. tashiroi. The polycarpic S. tashiroi exhibited seasonal thermal acclimation with increased leaf respiratory and photosynthetic metabolism in winter, whereas the monocarpic S. flexicaulis showed no thermal acclimation. The monocarpic S. flexicaulis required rapid height growth after germination under high intraspecific competition, and the respiration and N allocation were biased toward nonphotosynthetic tissues. By contrast, in the long-lived polycarpic S. tashiroi, these allocations were biased toward photosynthetic tissues. The life-history differences between the monocarpic S. flexicaulis and the polycarpic S. tashiroi are represented by the “height growth” and “assimilation” paradigms, respectively, which are controlled by different patterns of respiration and nitrogen regulation in leaves. The obtained data indicate that the monocarpic S. flexicaulis with the evolutionary loss of thermal acclimation may exhibit increased vulnerability to global warming

    6-Year Periodicity and Variable Synchronicity in a Mass-Flowering Plant

    Get PDF
    Periodical organisms, such as bamboos and periodical cicadas, are very famous for their synchronous reproduction. In bamboos and other periodical plants, the synchronicity of mass-flowering and withering has been often reported indicating these species are monocarpic (semelparous) species. Therefore, synchronicity and periodicity are often suspected to be fairly tightly coupled traits in these periodical plants. We investigate the periodicity and synchronicity of Strobilanthes flexicaulis, and a closely related species S. tashiroi on Okinawa Island, Japan. The genus Strobilanthes is known for several periodical species. Based on 32-year observational data, we confirmed that S. flexicaulis is 6-year periodical mass-flowering monocarpic plant. All the flowering plants had died after flowering. In contrast, we found that S. tashiroi is a polycarpic perennial with no mass-flowering from three-year individual tracking. We also surveyed six local populations of S. flexicaulis and found variation in the synchronicity from four highly synchronized populations (>98% of plants flowering in the mass year) to two less synchronized one with 11–47% of plants flowering before and after the mass year. This result might imply that synchrony may be selected for when periodicity is established in monocarpic species. We found the selective advantages for mass-flowering in pollinator activities and predator satiation. The current results suggest that the periodical S. flexicaulis might have evolved periodicity from a non-periodical close relative. The current report should become a key finding for understanding the evolution of periodical plants

    Evolutionary optimality in sex differences of longevity and athletic performances

    Get PDF
    Many sexual differences are known in human and animals. It is well known that females are superior in longevity, while males in athletic performances. Even though some sexual differences are attributed to the evolutionary tradeoff between survival and reproduction, the aforementioned sex differences are difficult to explain by this tradeoff. Here we show that the evolutionary tradeoff occurs among three components: (1) viability, (2) competitive ability and (3) reproductive effort. The sexual differences in longevity and athletic performances are attributed to the tradeoff between viability (survival) and competitive ability that belongs to the physical makeup of an individual, but not related to the tradeoff between survival and reproduction. This provides a new perspective on sex differences in human and animals: females are superior in longevity and disease recovery, while males are superior in athletic performance

    The Effects of Rainfall on the Population Dynamics of an Endangered Aquatic Plant, Schoenoplectus gemmifer (Cyperaceae).

    No full text
    The conservation of aquatic plants in river ecosystems should consider the wash-out (away) problem resulting from severe rainfall. The aquatic plant Schoenoplectus gemmifer is an endangered species endemic to Japan. Our previous study reported that the population size of S. gemmifer in Hamamatsu city, Japan, had decreased by one-tenth because many individuals had been washed out by a series of heavy rains in 2004. However, there is insufficient information on the ecological nature of this endangered aquatic plant for adequate conservation. In this paper, we report the population dynamics of one population in Hamamatsu city from 2004 to 2012 in relation to rainfall. We surveyed the number and growing location of all living individuals in the population 300 times during the study period. To examine the temporal changes of individual plants, we also counted the number of culms for 38 individuals in four observations among 300 records. Decreases and increases in the population size of this plant were associated with washing out and the settlement of gemmae (vegetative propagation), respectively. The major cause of the reduction in the population size was an increase in the number of washed-out individuals and not the decreased settlement of gemmae. The wash-out rates for small and large individuals were not significantly different. Small individuals having a stream form with linear leaves resisted flooding, and large individuals were often partially torn off by flooding events. Modification of river basins to reduce the flow velocity may be effective for the conservation of S. gemmifer

    Data from: Geographic body size variation in the periodical cicadas Magicicada: implications for life cycle divergence and local adaptation

    No full text
    Seven species in three species groups (Decim, Cassini and Decula) of periodical cicadas (Magicicada) occupy a wide latitudinal range in the eastern United States. To clarify how adult body size, a key trait affecting fitness, varies geographically with climate conditions and life cycle, we analysed the relationships of population mean head width to geographic variables (latitude, longitude, altitude), habitat annual mean temperature (AMT), life cycle and species differences. Within species, body size was larger in females than males and decreased with increasing latitude (and decreasing habitat AMT), following the converse Bergmann's rule. For the pair of recently diverged 13- and 17-year species in each group, 13-year cicadas were equal in size or slightly smaller on average than their 17-year counterparts despite their shorter developmental time. This fact suggests that, under the same climatic conditions, 17-year cicadas have lowered growth rates compared to their 13-years counterparts, allowing 13-year cicadas with faster growth rates to achieve body sizes equivalent to those of their 17-year counterparts at the same locations. However, in the Decim group, which includes two 13-year species, the more southerly, anciently diverged 13-year species (Magicicada tredecim) was characterized by a larger body size than the other, more northerly 13- and 17-year species, suggesting that local adaptation in warmer habitats may ultimately lead to evolution of larger body sizes. Our results demonstrate how geographic clines in body size may be maintained in sister species possessing different life cycles

    Evolution of periodicity in periodical cicadas

    Get PDF
    Periodical cicadas (Magicicada spp.) in the USA are famous for their unique prime-numbered life cycles of 13 and 17 years and their nearly perfectly synchronized mass emergences. Because almost all known species of cicada are non-periodical, periodicity is assumed to be a derived state. A leading hypothesis for the evolution of periodicity in Magicicada implicates the decline in average temperature during glacial periods. During the evolution of periodicity, the determinant of maturation in ancestral cicadas is hypothesized to have switched from size dependence to time (period) dependence. The selection for the prime-numbered cycles should have taken place only after the fixation of periodicity. Here, we build an individual-based model of cicadas under conditions of climatic cooling to explore the fixation of periodicity. In our model, under cold environments, extremely long juvenile stages lead to extremely low adult densities, limiting mating opportunities and favouring the evolution of synchronized emergence. Our results indicate that these changes, which were triggered by glacial cooling, could have led to the fixation of periodicity in the non-periodical ancestors
    corecore