33 research outputs found

    Efficiency and Stability Enhancement in Perovskite Solar Cells by Inserting Lithium-Neutralized Graphene Oxide as Electron Transporting Layer

    Get PDF
    This work proposes a new perovskite solar cell structure by including lithium-neutralized graphene oxide (GO-Li) as the electron transporting layer (ETL) on top of the mesoporous TiO2 (m-TiO2) substrate. The modified work-function of GO after the intercalation of Li atoms (4.3 eV) exhibits a good energy matching with the TiO2 conduction band, leading to a significant enhancement of the electron injection from the perovskite to the m-TiO2. The resulting devices exhibit an improved short circuit current and fill factor and a reduced hysteresis. Furthermore, the GO-Li ETL partially passivates the oxygen vacancies/defects of m-TiO2 by resulting in an enhanced stability under prolonged 1 SUN irradiation

    Self-powered, flexible and room temperature operated solution processed hybrid metal halide p-type sensing element for efficient hydrogen detection

    Get PDF
    Hydrogen (H2) is a well-known reduction gas and for safety reasons is very important to be detected. The most common systems employed along its detection are metal oxide-based elements. However, the latter demand complex and expensive manufacturing techniques, while they also need high temperatures or UV light to operate effectively. In this work, we first report a solution processed hybrid mixed halide spin coated perovskite films that have been successfully applied as portable, flexible, self-powered, fast and sensitive hydrogen sensing elements, operating at room temperature. The minimum concentrations of H2 gas that could be detected was down to 10 ppm. This work provides a new pathway on gases interaction with perovskite materials, launches new questions that must be addressed regarding the sensing mechanisms involved due to the utilization of halide perovskite sensing elements while also demonstrates the potential that these materials have on beyond solar cell applications

    Echinoderms from the Museum of Zoology from the Universidad de Costa Rica

    Get PDF
    El Museo de Zoología de la Universidad de Costa Rica (MZUCR) se funda en 1966 y alberga la colección de organismos vertebrados e invertebrados más completa de Costa Rica. El MZUCR cuenta actualmente con 24 colec-ciones que contienen más de cinco millones de especíme-nes, y más de 13 000 especies identificadas. Las primeras colecciones datan 1960 e incluyen peces, reptiles, anfibios, poliquetos, crustáceos y equinodermos. Para este último grupo, el MZUCR posee un total de 157 especies, en 1 173 lotes y 4 316 ejemplares. Estas 157 especies representan el 54% del total de especies de equinodermos que posee Costa Rica (293 especies). El resto de especies están repar-tidas en las siguientes instituciones: Academia de la Cien-cias de California (CAS) (4.8%), Instituto Oceanográfico Scripps (SIO) (5.2%), en la Colección Nacional de equino-dermos “Dra. Ma. Elena Caso” de la Universidad Nacional Autónoma de México (ICML-UNAM) (12.7%), Museo de Zoología Comparada de Harvard (MZC) (19.2%), y en el Museo Nacional de Historia Natural del Instituto Smithso-niano (USNM) (35.1%). Es posible que haya material de Costa Rica en el Museo de Historia Natural de Dinamarca (NCD) y en el Museo de Historia Natural de los Ángeles (LACM), sin embargo, no hubo acceso a dichas coleccio-nes. A su vez hay 9.6% de especies que no aparecen en ningún museo, pero están reportadas en la literatura. Con base en esta revisión de colecciones se actualizó el listado taxonómico de equinodermos para Costa Rica que consta de 293 especies, 152 géneros, 75 familias, 30 órdenes y cinco clases. La costa Pacífica de Costa Rica posee 153 especies, seguida por la isla del Coco con 134 y la costa Caribe con 65. Holothuria resultó ser el género más rico con 25 especies.The Museum of Zoology, Universidad de Costa Rica (MZUCR) was founded in 1966 and houses the most complete collection of vertebrates and invertebrates in Costa Rica. The MZUCR currently has 24 collections containing more than five million specimens, and more than 13 000 species. The earliest collections date back to 1960 and include fishes, reptiles, amphibians, polychaetes, crustaceans and echinoderms. For the latter group, the MZUCR has a total of 157 species, in 1 173 lots and 4 316 specimens. These 157 species represent 54% of the total species of echino-derms from Costa Rica. The remaining species are distributed in the following institutions: California Academy of Sciences (CAS) (4.8%), Scripps Oceanographic Institute (SIO) (5.2%), National Echinoderm Collection “Dr. Ma. Elena Caso” from the National Autonomous University of Mexico (ICML-UNAM) (12.7%), the National Museum of Natural History, Smithsonian Institute (USNM) (35.1%), and the Harvard Museum of Comparative Zoology (19.2%). There may be material from Costa Rica in the Natural History Museum of Denmark (NCD) and the Natural History Museum of Los Angeles (LACM), however, there was no access to such collections. There are 9.6% that do not appear in museums, but are reported in the literature. Based on this revision, the taxonomic list of echinoderms for Costa Rica is updated to 293 species, 152 genera, 75 families, 30 orders and 5 classes. The Pacific coast of Costa Rica has 153 species, followed by the Isla del Coco with 134 and the Caribbean coast with 65. Holothuria is the most diverse genus with 25 species.UCR::Vicerrectoría de Docencia::Ciencias Básicas::Facultad de Ciencias::Escuela de BiologíaUCR::Vicerrectoría de Investigación::Unidades de Investigación::Ciencias Básicas::Centro de Investigación en Ciencias del Mar y Limnología (CIMAR)UCR::Vicerrectoría de Investigación::Unidades de Investigación::Artes y Letras::Museo de la Universidad de Costa Ric

    Inorganic and hybrid perovskite based laser devices: A Review

    No full text
    Inorganic and organic-inorganic (hybrid) perovskite semiconductor materials have attracted worldwide scientific attention and research effort as the new wonder semiconductor material in optoelectronics. Their excellent physical and electronic properties have been exploited to boost the solar cells efficiency beyond 23% and captivate their potential as competitors to the dominant silicon solar cells technology. However, the fundamental principles in Physics, dictate that an excellent direct band gap material for photovoltaic applications must be also an excellent light emitter candidate. This has been realized for the case of perovskite-based light emitting diodes (LEDs) but much less for the case of the respective laser devices. Here, the strides, exclusively in lasing, made since 2014 are presented for the first time. The solution processability, low temperature crystallization, formation of nearly defect free, nanostructures, the long range ambipolar transport, the direct energy band gap, the high spectral emission tunability over the entire visible spectrum and the almost 100% external luminescence efficiency show perovskite semiconductors' potential to transform the nanophotonics sector. The operational principles, the various adopted material and laser configurations along the future challenges are reviewed and presented in this paper

    Efficient and Highly Air Stable Planar Inverted Perovskite Solar Cells with Reduced Graphene Oxide Doped PCBM Electron Transporting Layer

    No full text
    Reduced graphene oxide (rGO) is added in the [6,6]-Phenyl-C61-butyric acid methyl ester (PCBM) electron transport layer (ETL) of planar inverted perovskite solar cells (PSCs), resulting in a power conversion efficiency (PCE) improvement of ≈12%, with a hysteresis-free PCE of 14.5%, compared to 12.9% for the pristine PCBM based device. The universality of the method is demonstrated in PSCs based on CH3NH3PbI3−xClx and CH3NH3PbI3 perovskites, deposited through one step and two step spin coating process, respectively. After a comprehensive spectroscopic characterization of both devices, it is clear that the introduction of rGO in PCBM ETL results in an important increase of the ETL conductivity, together with reduced series resistance and surface roughness. As a result, a significant photoluminescence quenching of such perovskite/ETL is observed, confirming the increased measured short circuit current density. Transient absorption measurements reveal that in the rGO-based device, the relaxation process of the excited electrons is significantly faster compared to the reference, which implies that the charge injection rate is significantly faster for the first. Furthermore, the light soaking effect is significantly reduced. Finally, aging measurements reveal that the rGO stabilizes the ELT/perovskite interface, which results in the stabilization of perovskite crystal structure after prolonged illumination

    Plasmonic bulk heterojunction solar cells: the role of nanoparticle ligand coating

    No full text
    There has been a lot of interest regarding the influence of active-layer-incorporated plasmonic nanoparticles (NPs) in the performance of bulk heterojunction organic photovoltaic (OPV) devices, while both an increase and decrease in performance have been reported. In this paper, following a systematic approach, we demonstrate strong evidence of the critical importance of the NPs’ ligand shell on the device performance. In particular, it is argued that the plasmonic effect accountable for the performance enhancement takes place only in the case in which the NP’s core is in direct contact with the active layer polymer donor. This can be achieved with the utilization of either ligand-free NPs or NPs terminated with the same polymer donor as the active layer. Using this concept we achieved an enhanced efficiency of 7.16% in OPV devices incorporating the poly(3-hexylthiophene-2,5-diyl) (P3HT):indene-C60 bisadduct (ICBA) active layer. On the contrary, devices with ligand-terminated Au NPs show lower performance, even compared with the reference, NP-free, device due to the deteriorated active layer morphology attained, which leads to exciton quenching. These new insights into the plasmonic light-harvesting technology could shed light on the existing controversy and provide guidelines for device design and fabrication

    Extending the Continuous Operating Lifetime of Perovskite Solar Cells with a Molybdenum Disulfide Hole Extraction Interlayer

    No full text
    Solution-processed organic–inorganic lead halide perovskite solar cells (PSCs) are considered as one of the most promising photovoltaic technologies thanks to both high performance and low manufacturing cost. However, a key challenge of this technology is the lack of ambient stability over prolonged solar irradiation under continuous operating conditions. In fact, only a few studies (carried out in inert atmosphere) already approach the industrial standards. Here, it is shown how the introduction of MoS2 flakes as a hole transport interlayer in inverted planar PSCs results in a power conversion efficiency (PCE) of ≈17%, overcoming the one of the standard reference devices. Furthermore, this approach allows the realization of ultrastable PSCs, stressed in ambient conditions and working at continuous maximum power point. In particular, the photovoltaic performances of the proposed PSCs represent the current state-of-the-art in terms of lifetime, retaining 80% of their initial performance after 568 h of continuous stress test, thus approaching the industrial stability standards. Moreover, it is further demonstrated the feasibility of this approach by fabricating large-area PSCs (0.5 cm2 active area) with MoS2 as the interlayer. These large-area PSCs show improved performance (i.e., PCE = 13.17%) when compared with the standard devices (PCE = 10.64%)
    corecore