36 research outputs found

    Circumventing antivector immunity: potential use of nonhuman adenoviral vectors

    Get PDF
    Adenoviruses are efficient gene delivery vectors based on their ability to transduce a wide variety of cell types and drive high-level transient transgene expression. While there have been advances in modifying human adenoviral (HAdV) vectors to increase their safety profile, there are still pitfalls that need to be further addressed. Preexisting humoral and cellular immunity against common HAdV serotypes limits the efficacy of gene transfer and duration of transgene expression. As an alternative, nonhuman AdV (NHAdV) vectors can circumvent neutralizing antibodies against HAdVs in immunized mice and monkeys and in human sera, suggesting that NHAdV vectors could circumvent preexisting humoral immunity against HAdVs in a clinical setting. Consequently, there has been an increased interest in developing NHAdV vectors for gene delivery in humans. In this review, we outline the recent advances and limitations of HAdV vectors for gene therapy and describe examples of NHAdV vectors focusing on their immunogenicity, tropism, and potential as effective gene therapy vehicles

    WR1065 mitigates AZT-ddI-induced mutagenesis and inhibits viral replication

    Get PDF
    The success of nucleoside reverse transcriptase inhibitors (NRTIs) in treating HIV-1 infection and reducing mother-to-child transmission of the virus during pregnancy is accompanied by evidence that NRTIs cause long-term health risks for cancer and mitochondrial disease. Thus, agents that mitigate toxicities of the current combination drug therapies are needed. Previous work had shown that the NRTI-drug pair zidovudine (AZT)–didanosine (ddI) was highly cytotoxic and mutagenic; thus, we conducted preliminary studies to investigate the ability of the active moiety of amifostine, WR1065, to protect against the deleterious effects of this NRTI-drug pair. In TK6 cells exposed to 100 μM AZT-ddI (equimolar) for 3 days with or without 150 μM WR1065, WR1065 enhanced long-term cell survival and significantly reduced AZT-ddI-induced mutations. Follow-up studies were conducted to determine if coexposure to AZT and WR1065 abrogated the antiretroviral efficacy of AZT. In human T-cell blasts infected with HIV-1 in culture, inhibition of p24 protein production was observed in cells treated with 10 μM AZT in the absence or presence of 5–1,000 μM WR1065. Surprisingly, WR1065 alone exhibited dose-related inhibition of HIV-1 p24 protein production. WR1065 also had antiviral efficacy against three species of adenovirus and influenza A and B. Intracellular levels of unbound WR1065 were measured following in vitro/in vivo drug exposure. These pilot study results indicate that WR1065, at low intracellular levels, has cytoprotective and antimutagenic activities against the most mutagenic pair of NRTIs and has broad spectrum anti-viral effects. These findings suggest that the activities have a possible common mode of action that merits further investigation

    Cross-Species Transmission of a Novel Adenovirus Associated with a Fulminant Pneumonia Outbreak in a New World Monkey Colony

    Get PDF
    Adenoviruses are DNA viruses that naturally infect many vertebrates, including humans and monkeys, and cause a wide range of clinical illnesses in humans. Infection from individual strains has conventionally been thought to be species-specific. Here we applied the Virochip, a pan-viral microarray, to identify a novel adenovirus (TMAdV, titi monkey adenovirus) as the cause of a deadly outbreak in a closed colony of New World monkeys (titi monkeys; Callicebus cupreus) at the California National Primate Research Center (CNPRC). Among 65 titi monkeys housed in a building, 23 (34%) developed upper respiratory symptoms that progressed to fulminant pneumonia and hepatitis, and 19 of 23 monkeys, or 83% of those infected, died or were humanely euthanized. Whole-genome sequencing of TMAdV revealed that this adenovirus is a new species and highly divergent, sharing <57% pairwise nucleotide identity with other adenoviruses. Cultivation of TMAdV was successful in a human A549 lung adenocarcinoma cell line, but not in primary or established monkey kidney cells. At the onset of the outbreak, the researcher in closest contact with the monkeys developed an acute respiratory illness, with symptoms persisting for 4 weeks, and had a convalescent serum sample seropositive for TMAdV. A clinically ill family member, despite having no contact with the CNPRC, also tested positive, and screening of a set of 81 random adult blood donors from the Western United States detected TMAdV-specific neutralizing antibodies in 2 individuals (2/81, or 2.5%). These findings raise the possibility of zoonotic infection by TMAdV and human-to-human transmission of the virus in the population. Given the unusually high case fatality rate from the outbreak (83%), it is unlikely that titi monkeys are the native host species for TMAdV, and the natural reservoir of the virus is still unknown. The discovery of TMAdV, a novel adenovirus with the capacity to infect both monkeys and humans, suggests that adenoviruses should be monitored closely as potential causes of cross-species outbreaks

    Five Genome Sequences of Subspecies B1 Human Adenoviruses Associated with Acute Respiratory Disease

    No full text
    Five genomes of human subspecies B1 adenoviruses isolated from cases of acute respiratory disease have been sequenced and archived for reference. These include representatives of two prevalent genomic variants of HAdV-7, i.e., HAdV-7h and HAdV-7d2. The other three are HAdV-3/16, HAdV-16 strain E26, and HAdV-3+7 strain Takeuchi. All are recombinant genomes. Genomics and bioinformatics provide detailed views into the genetic makeup of these pathogens and insight into their molecular evolution. Retrospective characterization of particularly problematic older pathogens such as HAdV-7h (1987) and intriguing isolates such as HAdV-3+7 strain Takeuchi (1958) may provide clues to their phenotypes and serology and may suggest protocols for prevention and treatment

    Computational Analysis of Two Species C Human Adenoviruses Provides Evidence of a Novel Virus▿‡

    No full text
    Human adenovirus C (HAdV-C) species are a common cause of respiratory infections and can occasionally produce severe clinical manifestations. A deeper understanding of the variation and evolution in species HAdV-C is especially important since these viruses, including HAdV-C6, are used as gene delivery vectors for human gene therapy and in other biotechnological applications. Here, the full-genome analysis of the prototype HAdV-C6 and a recently identified virus provisionally termed HAdV-C57 are reported. Although the genomes of all species HAdV-C members are very similar to each other, the E3 region, hexon and fiber (ten proteins total) present a wide range of identity values at the amino acid level. Studies of these viruses in comparison to the other three HAdV-C prototypes (1, 2, and 5) comprise a comprehensive analysis of the diversity and conservation within HAdV-C species. HAdV-C6 contains a recombination event within the constant region of the hexon gene. HAdV-C57 is a recombinant virus with a fiber gene nearly identical to HAdV-C6 and a unique hexon distinguished by its loop 2 motif

    Sidestream Smoke Exposure Increases the Susceptibility of Airway Epithelia to Adenoviral Infection

    Get PDF
    <div><h3>Background</h3><p>Although significant epidemiological evidence indicates that cigarette smoke exposure increases the incidence and severity of viral infection, the molecular mechanisms behind the increased susceptibility of the respiratory tract to viral pathogens are unclear. Adenoviruses are non-enveloped DNA viruses and important causative agents of acute respiratory disease. The Coxsackievirus and adenovirus receptor (CAR) is the primary receptor for many adenoviruses. We hypothesized that cigarette smoke exposure increases epithelial susceptibility to adenovirus infection by increasing the abundance of apical CAR.</p> <h3>Methodology and Findings</h3><p>Cultured human airway epithelial cells (CaLu-3) were used as a model to investigate the effect of sidestream cigarette smoke (SSS), mainstream cigarette smoke (MSS), or control air exposure on the susceptibility of polarized respiratory epithelia to adenoviral infection. Using a Cultex air-liquid interface exposure system, we have discovered novel differences in epithelial susceptibility between SSS and MSS exposures. SSS exposure upregulates an eight-exon isoform of CAR and increases adenoviral entry from the apical surface whilst MSS exposure is similar to control air exposure. Additionally, the level of cellular glycogen synthase kinase 3β (GSK3β) is downregulated by SSS exposure and treatment with a specific GSK3β inhibitor recapitulates the effects of SSS exposure on CAR expression and viral infection.</p> <h3>Conclusions</h3><p>This is the first time that SSS exposure has been shown to directly enhance the susceptibility of a polarized epithelium to infection by a common respiratory viral pathogen. This work provides a novel understanding of the impact of SSS on the burden of respiratory viral infections and may lead to new strategies to alter viral infections. Moreover, since GSK3β inhibitors are under intense clinical investigation as therapeutics for a diverse range of diseases, studies such as these might provide insight to extend the use of clinically relevant therapeutics and increase the understanding of potential side effects.</p> </div

    GSK3β is downregulated 18 h post- sidestream cigarette smoke (SSS) exposure in comparison to air (SSFA or MSFA) or mainstream cigarette smoke (MSS) exposure.

    No full text
    <p>A: Analysis of total GSK3β mRNA levels by quantitative RT-PCR (four to six biological replicates per condition measured in duplicate in each qPCR assay; three independent experiments; mean values from three independent experiments relative to control<u>+</u>SE of the mean). B: GSK3β and C: GSK3β-pS9 protein levels, representative Western blot and densitometric analysis, relative to β-actin (mean values from three independent experiments (duplicate gels per experiment) expressed as a percentage of control<u>+</u>SE of the mean). *p<0.05.</p
    corecore