69 research outputs found
Electromagnetic Calorimeter for HADES
We propose to build the Electromagnetic calorimeter for the HADES di-lepton
spectrometer. It will enable to measure the data on neutral meson production
from nucleus-nucleus collisions, which are essential for interpretation of
dilepton data, but are unknown in the energy range of planned experiments (2-10
GeV per nucleon). The calorimeter will improve the electron-hadron separation,
and will be used for detection of photons from strange resonances in elementary
and HI reactions.
Detailed description of the detector layout, the support structure, the
electronic readout and its performance studied via Monte Carlo simulations and
series of dedicated test experiments is presented.
The device will cover the total area of about 8 m^2 at polar angles between
12 and 45 degrees with almost full azimuthal coverage. The photon and electron
energy resolution achieved in test experiments amounts to 5-6%/sqrt(E[GeV])
which is sufficient for the eta meson reconstruction with S/B ratio of 0.4% in
Ni+Ni collisions at 8 AGeV. A purity of the identified leptons after the hadron
rejection, resulting from simulations based on the test measurements, is better
than 80% at momenta above 500 MeV/c, where time-of-flight cannot be used.Comment: 40 pages, 38 figures version2 - the time schedule added, information
about PMTs in Sec.III update
Multichannel FPGA based MVT system for high precision time (20~ps~RMS) and charge measurement
In this article it is presented an FPGA based ulti-oltage hreshold
(MVT) system which allows of sampling fast signals ( ns rising and falling
edge) in both voltage and time domain. It is possible to achieve a precision of
time measurement of ps RMS and reconstruct charge of signals, using a
simple approach, with deviation from real value smaller than 10.
Utilization of the differential inputs of an FPGA chip as comparators together
with an implementation of a TDC inside an FPGA allowed us to achieve a compact
multi-channel system characterized by low power consumption and low production
costs. This paper describes realization and functioning of the system
comprising 192-channel TDC board and a four mezzanine cards which split
incoming signals and discriminate them. The boards have been used to validate a
newly developed Time-of-Flight Positron Emission Tomography system based on
plastic scintillators. The achieved full system time resolution of
(TOF) ps is by factor of two better with respect to the
current TOF-PET systems.Comment: Accepted for publication in JINST, 10 pages, 8 figure
Evaluation of Single-Chip, Real-Time Tomographic Data Processing on FPGA - SoC Devices
A novel approach to tomographic data processing has been developed and
evaluated using the Jagiellonian PET (J-PET) scanner as an example. We propose
a system in which there is no need for powerful, local to the scanner
processing facility, capable to reconstruct images on the fly. Instead we
introduce a Field Programmable Gate Array (FPGA) System-on-Chip (SoC) platform
connected directly to data streams coming from the scanner, which can perform
event building, filtering, coincidence search and Region-Of-Response (ROR)
reconstruction by the programmable logic and visualization by the integrated
processors. The platform significantly reduces data volume converting raw data
to a list-mode representation, while generating visualization on the fly.Comment: IEEE Transactions on Medical Imaging, 17 May 201
Study of dielectron production in C+C collisions at 1 AGeV
The emission of e+e- pairs from C+C collisions at an incident energy of 1 GeV
per nucleon has been investigated. The measured production probabilities,
spanning from the pi0-Dalitz to the rho/omega! invariant-mass region, display a
strong excess above the cocktail of standard hadronic sources. The
bombarding-energy dependence of this excess is found to scale like pion
production, rather than like eta production. The data are in good agreement
with results obtained in the former DLS experiment.Comment: submitted to Physics Letters
The High-Acceptance Dielectron Spectrometer HADES
HADES is a versatile magnetic spectrometer aimed at studying dielectron
production in pion, proton and heavy-ion induced collisions. Its main features
include a ring imaging gas Cherenkov detector for electron-hadron
discrimination, a tracking system consisting of a set of 6 superconducting
coils producing a toroidal field and drift chambers and a multiplicity and
electron trigger array for additional electron-hadron discrimination and event
characterization. A two-stage trigger system enhances events containing
electrons. The physics program is focused on the investigation of hadron
properties in nuclei and in the hot and dense hadronic matter. The detector
system is characterized by an 85% azimuthal coverage over a polar angle
interval from 18 to 85 degree, a single electron efficiency of 50% and a vector
meson mass resolution of 2.5%. Identification of pions, kaons and protons is
achieved combining time-of-flight and energy loss measurements over a large
momentum range. This paper describes the main features and the performance of
the detector system
HADES experiment: di-lepton spectroscopy in p + p (2.2 GeV) and C+C (1 and 2 A GeV) collisions
The HADES (High Acceptance Di-Electron Spectrometer) is a tool designed for lepton pair (e+e−) spectroscopy in pion, proton and heavy ion induced reactions in the 1–2AGeV energy range. One of the goals of the HADES experiment is to study in-medium modifications of hadron properties like effective masses, decay widths, electromagnetic form factors etc. Such effects can be probed with vector mesons ( ρ,ω,ɸ ) decaying into e+e− channel. The identification of vector mesons by means of a HADES spectrometer is based on invariant mass reconstruction of e+e− pairs. The combined information from all spectrometer sub-detectors is used to reconstruct the di-lepton signal. The recent results from 2.2GeV p + p, 1AGeV and 2AGeV C+C experiments are presented.Diaz Medina, Jose, [email protected]
The HADES-at-FAIR project
After the completion of the experimental program at SIS18 the HADES setup will migrate to FAIR, where it will deliver high-quality data for heavy-ion collisions in an unexplored energy range of up to 8 A GeV. In this contribution, we briefly present the physics case, relevant detector characteristics and discuss the recently completed upgrade of HADES. © 2012 Pleiades Publishing, Ltd. 75 5 589 593 Cited By :
- …