142 research outputs found

    Increased expression of programmed death ligand 1 (PD-L1) in human pituitary tumors

    Get PDF
    PURPOSE: Subsets of pituitary tumors exhibit an aggressive clinical courses and recur despite surgery, radiation, and chemotherapy. Because modulation of the immune response through inhibition of T-cell checkpoints has led to durable clinical responses in multiple malignancies, we explored whether pituitary adenomas express immune-related biomarkers that could suggest suitability for immunotherapy. Specifically, programmed death ligand 1 (PD-L1) has emerged as a potential biomarker whose expression may portend more favorable responses to immune checkpoint blockade therapies. We thus investigated the expression of PD-L1 in pituitary adenomas. METHODS: PD-L1 RNA and protein expression were evaluated in 48 pituitary tumors, including functioning and non-functioning adenomas as well as atypical and recurrent tumors. Tumor infiltrating lymphocyte populations were also assessed by immunohistochemistry. RESULTS: Pituitary tumors express variable levels of PD-L1 transcript and protein. PD-L1 RNA and protein expression were significantly increased in functioning (growth hormone and prolactin-expressing) pituitary adenomas compared to non-functioning (null cell and silent gonadotroph) adenomas. Moreover, primary pituitary adenomas harbored higher levels of PD-L1 mRNA compared to recurrent tumors. Tumor infiltrating lymphocytes were observed in all pituitary tumors and were positively correlated with increased PD-L1 expression, particularly in the functional subtypes. CONCLUSIONS: Human pituitary adenomas harbor PD-L1 across subtypes, with significantly higher expression in functioning adenomas compared to non-functioning adenomas. This expression is accompanied by the presence of tumor infiltrating lymphocytes. These findings suggest the existence of an immune response to pituitary tumors and raise the possibility of considering checkpoint blockade immunotherapy in cases refractory to conventional management

    Modulation of the secretion of potassium by accompanying anions in humans

    Get PDF
    Modulation of the secretion of potassium by accompanying anions in humans. In animals, secretion of potassium (K) in the cortical collecting duct (CCD) is modulated by the properties of the accompanying anion. In humans, results are inconclusive as previous studies have not differentiated between a kaliuresis due to a rise in the concentration of K from one due to an increase in the volume of urine. Our purpose was to study the effects of chloride (Cl) and bicarbonate on the secretion of K in the CCD in humans using the transtubular K concentration gradient (TTKG), a semi-quantitative index of secretion of K in the terminal CCD. After control blood and urine samples were obtained, all subjects ingested 0.2mg fludrocortisone to ensure that mineralocorticoids were not limiting the secretion of K. The anionic composition of the urine was varied using three protocols: Normal subjects (N = 11) ingested cystine and methionine to induce sulfaturia; nine subjects with a contracted ECF volume (to lower the concentration of Cl in the urine) were also studied during sulfaturia following the ingestion of cystine and methionine; 13 normovolemic subjects were studied during bicarbonaturia following the ingestion of acetazolamide. When the concentration of Cl in the urine was > 15 mmol/liter, sulfate had no effect on the TTKG. With lower concentrations of Cl in the urine, the TTKG rose 1.5-fold. The TTKG rose 1.8-fold in the presence of bicarbonaturia despite concentrations of Cl in the urine that were >15 mmol/liter, suggesting that bicarbonate has additional effects on this K secretory process. At comparable concentrations of sulfate and bicarbonate in the urine, the TTKG was increased only with bicarbonaturia. We conclude that it is important to control for the effects of the accompanying anions when evaluating the role of the kidney in disorders of K homeostasis

    Plasma androgens and the presence and course of depression in a large cohort of women

    Get PDF
    Major depressive disorder (MDD) has a higher prevalence in women with supraphysiologic androgen levels. Whether there is also an association between depression and androgen levels in the physiological range, is unknown. This study examined if women with current MDD have higher androgen levels compared to women who have never had MDD, and if androgen levels are associated with onset and remission of MDD. In 1659 women (513 current MDD, 754 remitted MDD, and 392 never MDD), baseline plasma levels of total testosterone, 5 alpha-dihydrotestosterone, and androstenedione were determined with liquid chromatography-tandem mass spectrometry, and dehydroepiandrosterone-sulfate and sex hormone binding globulin (SHBG) with radioimmunoassays. Free testosterone was calculated. MDD status was assessed at baseline, and at 2 and 4 years follow-up. Women were aged between 18 and 65 years (mean age 41) with total testosterone levels in the physiological range (geometric mean 0.72 nmol/L [95% CI 0.27-1.93]). After adjusting for covariates and multiple testing, women with current MDD had a higher mean free testosterone than women who never had MDD (adjusted geometric mean 8.50 vs. 7.55 pmol/L, p = 0.0005), but this difference was not large enough to be considered clinically meaningful as it was consistent with statistical equivalence. Levels of other androgens and SHBG did not differ and were also statistically equivalent between the groups. None of the androgens or SHBG levels predicted onset or remission of MDD. Our findings support the idea that plasma androgens within the physiological range have no or only limited effects on depressive disorders in women

    Age Induced Nitroso-Redox Imbalance Leads to Subclinical Hypogonadism in Male Mice

    Get PDF
    Objective: The cause of age-related changes in testosterone remains unclear. We hypothesized that increased nitroso-redox imbalance with aging could affect testosterone production.Materials and Methods: We measured several markers of nitroso-redox imbalance (4-HNE, 3-NT, and NT) in serum of S-nitrosoglutathione reductase knock out (GSNOR KO) mice that have increased nitroso-redox imbalance and compared these to wild-type (WT) mice. We evaluated the impact of age-induced nitroso-redox imbalance on serum luteinizing hormone (LH) and testosterone (T) in WT young (<2 months), middle-aged (2–6 months), and aged (>12 months) mice. Finally, to elucidate the susceptibility of testes to nitroso-redox imbalance, we measured 4-HNE protein levels in the testes of WT and KO mice.Results: We identified 4-HNE as a reliable marker of nitroso-redox imbalance, as evidenced by increased protein levels in serum of GSNOR KO mice compared with WT mice. We demonstrated that 4-HNE serum protein levels increase in WT mice with age but do not accumulate in the testes. We also found that T levels were similar in all age groups. Interestingly, we found that serum LH levels in aged and middle-aged mice were increased when compared to young mice (n = 5) consistent with the phenotype of subclinical hypogonadism.Conclusions: Increased serum 4-HNE and LH levels without changes in T with age suggest that nitroso-redox imbalance is associated with subclinical hypogonadism in aged mice. Recognizing the relationship and etiology of a currently poorly understood classification of hypogonadism could be a paradigm shift in how age-related testosterone change is diagnosed and treated

    Functional rescue of inactivating mutations of the human neurokinin 3 receptor using pharmacological chaperones

    Get PDF
    G protein-coupled receptors (GPCRs) facilitate the majority of signal transductions across cell membranes in humans, with numerous diseases attributed to inactivating GPCR mutations. Many of these mutations result in misfolding during nascent receptor synthesis in the endoplasmic reticulum (ER), resulting in intracellular retention and degradation. Pharmacological chaperones (PCs) are cell-permeant small molecules that can interact with misfolded receptors in the ER and stabilise/rescue their folding to promote ER exit and trafficking to the cell membrane. The neurokinin 3 receptor (NK3R) plays a pivotal role in the hypothalamic–pituitary–gonadal reproductive axis. We sought to determine whether NK3R missense mutations result in a loss of cell surface receptor expression and, if so, whether a cell-permeant small molecule NK3R antagonist could be repurposed as a PC to restore function to these mutants. Quantitation of cell surface expression levels of seven mutant NK3Rs identified in hypogonadal patients indicated that five had severely impaired cell surface expression. A small molecule NK3R antagonist, M8, increased cell surface expression in four of these five and resulted in post-translational receptor processing in a manner analogous to the wild type. Importantly, there was a significant improvement in receptor activation in response to neurokinin B (NKB) for all four receptors following their rescue with M8. This demonstrates that M8 may have potential for therapeutic development in the treatment of hypogonadal patients harbouring NK3R mutations. The repurposing of existing small molecule GPCR modulators as PCs represents a novel and therapeutically viable option for the treatment of disorders attributed to mutations in GPCRs that cause intracellular retention.The National Research Foundation South Africa; Competitive Support for Unrated Researchers; the Swiss–South African Joint Research Programme; Competitive Support for Rated Researchers; the NRF National Equipment Program and the National Institutes of Health.https://www.mdpi.com/journal/ijmsAnatomy and PhysiologyImmunologyPhysiolog

    Hypothalamic miR-30 regulates puberty onset via repression of the puberty-suppressing factor, Mkrn3.

    Get PDF
    Mkrn3, the maternally imprinted gene encoding the makorin RING-finger protein-3, has recently emerged as putative pubertal repressor, as evidenced by central precocity caused by MKRN3 mutations in humans; yet, the molecular underpinnings of this key regulatory action remain largely unexplored. We report herein that the microRNA, miR-30, with three binding sites in a highly conserved region of its 3' UTR, operates as repressor of Mkrn3 to control pubertal onset. Hypothalamic miR-30b expression increased, while Mkrn3 mRNA and protein content decreased, during rat postnatal maturation. Neonatal estrogen exposure, causing pubertal alterations, enhanced hypothalamic Mkrn3 and suppressed miR-30b expression in female rats. Functional in vitro analyses demonstrated a strong repressive action of miR-30b on Mkrn3 3' UTR. Moreover, central infusion during the juvenile period of target site blockers, tailored to prevent miR-30 binding to Mkrn3 3' UTR, reversed the prepubertal down-regulation of hypothalamic Mkrn3 protein and delayed female puberty. Collectively, our data unveil a novel hypothalamic miRNA pathway, involving miR-30, with a prominent role in the control of puberty via Mkrn3 repression. These findings expand our current understanding of the molecular basis of puberty and its disease states

    Mutational analysis of TAC3 and TACR3 genes in patients with idiopathic central pubertal disorders

    Get PDF
    OBJETIVO: Investigar a presença de variantes nos genes TAC3 e TACR3, os quais codificam a NKB e seu receptor (NK3R), respectivamente, em uma coorte de pacientes com distúrbios puberais centrais idiopáticos. \ud SUJEITOS E MÉTODOS: Duzentos e trinta e sete pacientes foram estudados: 114 com puberdade precoce central (PPC), 73 com hipogonadismo hipogonadotrófico isolado normósmico (HHI) e 50 com retardo constitucional do crescimento e desenvolvimento (RCCD). O grupo controle consistiu de 150 indivíduos brasileiros que apresentaram desenvolvimento puberal normal. O DNA genômico foi extraído de sangue periférico, e as regiões codificadoras dos genes TAC3 e TACR3 foram amplificadas e sequenciadas automaticamente. \ud RESULTADOS: Uma variante (p.A63P) foi identificada na NKB, e quatro variantes, p.G18D, p.L58L (c.172C>T), p.W275X e p.A449S, foram identificadas no NK3R, as quais foram ausentes no grupo controle. A variante p.A63P foi identificada em uma menina com PPC, e a variante p.A449S, em uma menina com RCCD. As variantes previamente descritas, p.G18D, p.L58L e p.W275X, foram identificadas em três indivíduos com HHI normósmico do sexo masculino não relacionados. \ud CONCLUSÃO: Variantes raras nos genes TAC3 e TACR3 foram identificadas em pacientes com distúrbios puberais centrais idiopáticos. Mutações de perda de função no gene TACR3 foram associadas com o fenótipo de HHI normósmico. Arq Bras Endocrinol Metab. 2012;56(9):646-52Objective: To investigate the presence of variants in the TAC3 and TACR3 genes, which encode NKB and its receptor (NK3R), respectively, in a large cohort of patients with idiopathic central pubertal disorders. Subjects and methods: Two hundred and thirty seven patients were studied: 114 with central precocious puberty (CPP), 73 with normosmic isolated hypogonadotropic hypogonadism (IHH), and 50 with constitutional delay of growth and puberty (CDGP). The control group consisted of 150 Brazilian individuals with normal pubertal development. Genomic DNA was extracted from peripheral blood and the entire coding region of both TAC3 and TACR3 genes were amplified and automatically sequenced. Results: We identified one variant (p.A63P) in NKB and four variants, p.G18D, p.L58L (c.172C > T), p.W275* and p.A449S in NK3R, which were absent in the control group. The p.A63P variant was identified in a girl with CPP, and p.A449S in a girl with CDGP. The known p.G18D, p.L58L, and p.W275* variants were identified in three unrelated males with normosmic IHH. Conclusion: Rare variants in the TAC3 and TACR3 genes were identified in patients with central pubertal disorders. Loss-of-function variants of TACR3 were associated with the normosmic IHH phenotype. Arq Bras Endocrinol Metab. 2012; 56(9):646-52FAPESPFapesp [05/04726]Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq) [302825/2011-8, 305743/2011-8]Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq)Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health (NIH)Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health (NIH) [U54 HD28138

    A randomized, phase III trial of capecitabine plus bevacizumab (Cape-Bev) versus capecitabine plus irinotecan plus bevacizumab (CAPIRI-Bev) in first-line treatment of metastatic colorectal cancer: The AIO KRK 0110 Trial/ML22011 Trial

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Several randomized trials have indicated that combination chemotherapy applied in metastatic colorectal cancer (mCRC) does not significantly improve overall survival when compared to the sequential use of cytotoxic agents (CAIRO, MRC Focus, FFCD 2000-05). The present study investigates the question whether this statement holds true also for bevacizumab-based first-line treatment including escalation- and de-escalation strategies.</p> <p>Methods/Design</p> <p>The AIO KRK 0110/ML22011 trial is a two-arm, multicenter, open-label randomized phase III trial comparing the efficacy and safety of capecitabine plus bevacizumab (Cape-Bev) versus capecitabine plus irinotecan plus bevacizumab (CAPIRI-Bev) in the first-line treatment of metastatic colorectal cancer. Patients with unresectable metastatic colorectal cancer, Eastern Cooperative Oncology Group (ECOG) performance status 0-1, will be assigned in a 1:1 ratio to receive either capecitabine 1250 mg/m<sup>2 </sup>bid for 14d (d1-14) plus bevacizumab 7.5 mg/kg (d1) q3w (Arm A) or capecitabine 800 mg/m<sup>2 </sup>BID for 14d (d1-14), irinotecan 200 mg/m<sup>2 </sup>(d1) and bevacizumab 7.5 mg/kg (d1) q3w (Arm B). Patients included into this trial are required to consent to the analysis of tumour tissue and blood for translational investigations. In Arm A, treatment escalation from Cape-Bev to CAPIRI-Bev is recommended in case of progressive disease (PD). In Arm B, de-escalation from CAPIRI-Bev to Cape-Bev is possible after 6 months of treatment or in case of irinotecan-associated toxicity. Re-escalation to CAPIRI-Bev after PD is possible. The primary endpoint is time to failure of strategy (TFS). Secondary endpoints are overall response rate (ORR), overall survival, progression-free survival, safety and quality of life.</p> <p>Conclusion</p> <p>The AIO KRK 0110 trial is designed for patients with disseminated, but asymptomatic mCRC who are not potential candidates for surgical resection of metastasis. Two bevacizumab-based strategies are compared: one starting as single-agent chemotherapy (Cape-Bev) allowing escalation to CAPIRI-Bev and another starting with combination chemotherapy (CAPIRI-Bev) and allowing de-escalation to Cape-Bev and subsequent re-escalation if necessary.</p> <p>Trial Registration</p> <p>ClinicalTrials.gov Identifier <a href="http://www.clinicaltrials.gov/ct2/show/NCT01249638">NCT01249638</a></p> <p>EudraCT-No.: 2009-013099-38</p

    Reproductive Hormone-Dependent and -Independent Contributions to Developmental Changes in Kisspeptin in GnRH-Deficient Hypogonadal Mice

    Get PDF
    Kisspeptin is a potent activator of GnRH-induced gonadotropin secretion and is a proposed central regulator of pubertal onset. In mice, there is a neuroanatomical separation of two discrete kisspeptin neuronal populations, which are sexually dimorphic and are believed to make distinct contributions to reproductive physiology. Within these kisspeptin neuron populations, Kiss1 expression is directly regulated by sex hormones, thereby confounding the roles of sex differences and early activational events that drive the establishment of kisspeptin neurons. In order to better understand sex steroid hormone-dependent and -independent effects on the maturation of kisspeptin neurons, hypogonadal (hpg) mice deficient in GnRH and its downstream effectors were used to determine changes in the developmental kisspeptin expression. In hpg mice, sex differences in Kiss1 mRNA levels and kisspeptin immunoreactivity, typically present at 30 days of age, were absent in the anteroventral periventricular nucleus (AVPV). Although immunoreactive kisspeptin increased from 10 to 30 days of age to levels intermediate between wild type (WT) females and males, corresponding increases in Kiss1 mRNA were not detected. In contrast, the hpg arcuate nucleus (ARC) demonstrated a 10-fold increase in Kiss1 mRNA between 10 and 30 days in both females and males, suggesting that the ARC is a significant center for sex steroid-independent pubertal kisspeptin expression. Interestingly, the normal positive feedback response of AVPV kisspeptin neurons to estrogen observed in WT mice was lost in hpg females, suggesting that exposure to reproductive hormones during development may contribute to the establishment of the ovulatory gonadotropin surge mechanism. Overall, these studies suggest that the onset of pubertal kisspeptin expression is not dependent on reproductive hormones, but that gonadal sex steroids critically shape the hypothalamic kisspeptin neuronal subpopulations to make distinct contributions to the activation and control of the reproductive hormone cascade at the time of puberty
    corecore